
Full scan testing of handshake circuits

Frank J. te Beest

2003

Ph.D. thesis
University of Twente

Also available in print:
http://www.tup.utwente.nl/

T w e n t e U n i v e r s i t y P r e s s

http://www.tup.utwente.nl/catalogue/book/index.jsp?isbn=9036519098

Full scan testing of handshake circuits

This research was supported by the Technology Foundation STW,

applied science division of NWO and the technology programme

of the Ministry of Economic Affairs in the Netherlands.

Publisher: Twente University Press,

P.O. Box 217, 7500 AE Enschede, the Netherlands,

www.tup.utwente.nl

Cover design: Jo Molenaar, [deel4 ontwerpers], Enschede

Print: Océ Facility Services, Enschede

© F.J. te Beest, Enschede, 2003

No part of this work may be reproduced by print,

photocopy or any other means without the permission

in writing from the publisher.

ISBN 9036519098

FULL SCAN TESTING
OF HANDSHAKE CIRCUITS

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,

prof.dr. F.A. van Vught,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op woensdag 21 mei 2003 om 15.00 uur

door

Frank Johan te Beest

geboren op 19 juni 1973

te Dinxperlo

Dit proefschrift is goedgekeurd door de promotoren

prof.dr.ir. T. Krol

prof.dr.ir. C.H. van Berkel

en de assistent-promotor

dr.ir. H.G. Kerkhoff

Contents

1 Introduction 1
1.1 Handshake circuits . 2
1.2 Production testing . 7
1.3 Motivation . 16
1.4 Objectives . 17
1.5 Original contributions . 18
1.6 Thesis outline . 18

2 Testing of handshake circuits 21
2.1 Gate-level implementations of handshake circuits 21
2.2 Test properties of handshake circuits 25
2.3 Handshake circuit test methods . 34
2.4 Scan test in asynchronous circuits 38
2.5 Summary . 39

3 Scan testing of handshake control circuits 41
3.1 Synchronous scan . 41
3.2 Logic gates . 45
3.3 Scannable logic gates . 52
3.4 Clocking strategies . 59
3.5 Summary . 66

4 Full scan test for handshake circuits 69
4.1 Design for testability . 69
4.2 Test generation . 78
4.3 Additional modifications . 83

i

4.4 Test control logic . 93
4.5 Implementation of the scan-test flow 99
4.6 Summary . 105

5 Results 107
5.1 Scan C-elements . 107
5.2 Full scan . 111
5.3 Demonstrator . 116
5.4 Summary . 119

6 Conclusion 121
6.1 Conclusions . 121
6.2 Improving full-scan . 123
6.3 Beyond full-scan . 124
6.4 Implications for handshake circuits 125

Bibliography 127

A Using the CAT tools 133
A.1 Test-pattern generation . 134
A.2 Protocol expansion . 136
A.3 Vector generation . 139

Summary 141

Samenvatting 143

Acknowledgments 145

Index 149

ii

Chapter 1

Introduction

The drive for more power-efficient circuits has been one of the main reasons to search
for alternatives for the conventional synchronous circuit design style. One of the main
obstacles to reduce the power consumption of synchronous circuits is the global clock
that generates continuous activity in the circuit, even when (part of) the circuit is not
doing any useful work. In an asynchronous circuit, this global clock is replaced by a
local synchronization mechanism that is only active where and when it is required.

Handshake circuits are a sub-class of asynchronous circuits. They follow a set of
design rules that make them easier to design and verify than general asynchronous
circuits. The introduction of high-level synthesis tools for handshake circuits has led
to a rapid increase in size and complexity of these circuits during the last ten years.
The handshake circuit technology matured sufficiently to be implemented in various
commercial products, like a family of pager chips and a family of smartcards [32, 33].
These products use the handshake technology to exploit one or more of the benefits
offered by handshake circuits. Some of the most important benefits are [10]:

• Low power consumption

• Low electro-magnetic emission

• Robustness, with regard to power-supply voltage, process and temperature
fluctuations

Although the technology has led to several commercial products, up to now the
widespread industrial uptake of handshake circuits has been minimal. This is partly
caused by the unfamiliarity of the technology. The other main reason has been the

1

2 Chapter 1. Introduction

lack of a mature design flow covering all the steps from specification to layout. De-
spite the existence of a powerful synthesis tool [11], one critical step in the design
flow has so far been missing. This step is an easy-to-use test method that can achieve
test quality equal to conventional synchronous test quality and that offers an auto-
mated test flow.

This thesis describes the development and implementation of such a complete and
automated test flow for handshake circuits. The work is primarily targeted at hand-
shake circuits designed using the Tangram tools that were developed at the Philips
Research Laboratories [11]. The Tangram tools were developed in a project starting
in the late 1980’s and the initial focus was VLSI programming. This is the usage
of a high-level programming language to design digital VLSI circuits. The research
gradually evolved into the most powerful toolkit currently available for the design of
handshake circuits.

1.1 Handshake circuits

Handshake circuits are a member of the larger family of asynchronous circuits. In
handshake circuits, the clock that normally synchronizes activity in a circuit is re-
placed by handshake channels. Two components in the circuit that need to synchro-
nize, for example to transfer data, do this by signaling over a dedicated handshake
channel. Handshake circuits consist of a number of handshake components, con-
nected by handshake channels. Within the Tangram tools, a number of predefined
handshake components are available that are combined into a circuit following a de-
scription in a high-level language. A detailed overview of the design and implemen-
tation of handshake circuits can be found in [45, 63, 8].

1.1.1 Handshake channels

Handshake channels can be implemented in many different ways, but their function-
ality is always the same: to synchronize two handshake components [57]. The ports
at the ends of the channel can be either active or passive. A channel is activated by the
handshake component connected to the active port of the channel and it uses its pas-
sive port to activate the handshake component connected to that port. A channel can
be used to transfer data between a sending component and a receiving component,
but it can also be used purely as a synchronization event. The concepts of sender -
receiver and active - passive are orthogonal. Depending on the application, a sender
can be either active or passive.

Within the Tangram tools, three types of channels are used. They are shown
in Figure 1.1. The first channel is only used for synchronization, there is no data
transfer. This type is called a nonput channel. Since there is no data transfer, there
is also no sending and receiving side, only an active and a passive port. The active

1.1. Handshake circuits 3

Active Passive

Sender

SenderReceiver

Receiver

Nonput channel

Push channel

Pull channel

Figure 1.1: Handshake channel types used in Tangram.

port is represented by a filled circle, the passive port by an open circle. The channel
is implemented with two signals, a request and an acknowledge.

The other two types of channels are used to transfer data. The first of these
two channels is used to transfer data from the active port to the passive port. The
direction of the data is indicated by the arrow drawn in the channel. The active port
essentially pushes data to the passive port and is therefore called a push channel. In
the last channel, the active port requests data form the passive port and is called a pull
channel. This terminology was first introduced in [45].

Request

Acknowledge

Data

False

True

Acknowledge

(a) 2-phase single rail (b) 4-phase single rail

(c) 2-phase dual rail (d) 4-phase dual rail

Figure 1.2: Examples of handshake protocols.

Channels can be implemented in various ways. The first choice is between 2-
phase signaling and 4-phase signaling. The 2-phase signaling, shown in Figure 1.2(a)
and Figure 1.2(c), uses fewer signal transitions for the request and acknowledge sig-
nals, which reduces the power consumption in the channel. However, the handshake
components connected to these channels need to respond in the same way for both
up and down transitions. In general this requires a more complex implementation of
the handshake components, removing much of the benefits of the 2-phase signaling
protocol. For this reason, Tangram based handshake circuits use a 4-phase signal-
ing protocol, shown in Figure 1.2(b) and Figure 1.2(d), which allows for a simpler

4 Chapter 1. Introduction

implementation of the handshake components.
A second implementation option, in case of a pull or a push channel, is the en-

coding of the data. An elegant encoding is the dual-rail encoding, which uses two
data wires for every bit, a true wire and a false wire: {true, false}. The request infor-
mation is encoded in these data wires and not available as a separate signal. A zero
is transmitted by raising the false-wire {true, false} = {0, 1} and a one is transmitted
by raising the true-wire {true, false} = {1, 0}. The state {1, 1} signals invalid data;
if this state is detected, an error has occurred in the circuit. Data is transmitted over
the channel by interleaving a data item (either true or false) with a null (or empty) {0,
0} signal. This enables the receiver to determine whether or not data on the channel
is valid. This ensures that the channel is totally independent of wire delays. The ob-
vious disadvantage of dual-rail signaling is the increased complexity of the required
logic and the overhead of the additional wires.

A second data encoding option for the channel is to use normal Boolean en-
coding, also called single-rail encoding. The advantage is that it allows the use of
conventional Boolean logic, which is smaller and can be optimized with standard
logic optimizers. The disadvantage is that the receiver can no longer determine when
the data on the channel is valid, just by looking at the data signals. In single-rail
encoding, the request and acknowledge signals have to be delayed sufficiently long
to allow the data to become valid. For this reason, delays are added to the request
and acknowledge signals that will delay the handshake until the data on the receiving
side of the channel is guaranteed to be valid. Example protocols of all four combina-
tions, single rail versus dual rail and 2-phase versus 4-phase are shown in Figure 1.2.
In handshake circuits generated by Tangram, the 4-phase handshake signaling pro-
tocol is used in combination with single-rail data encoding [45], corresponding to
Figure 1.2(b).

1.1.2 Handshake components

Handshake channels are used to connect handshake components together to form a
handshake circuit. Handshake components implement commonly used predefined
behavior. About 40 different types of handshake components exist, some of which
have parameters, for example to specify the number of ports. All handshake compo-
nents have ports that connect to handshake channels. Like the ports of a handshake
channel, these ports can be either active or passive and have optional data inputs or
outputs. Every component corresponds to a different Tangram language construct.
The most common handshake components are shown in Figure 1.3. The four compo-
nents at the top of the figure only have nonput ports, and are used to control the flow
of activity in a circuit.

• The repeater is activated once via its passive port and will then generate a
continuous stream of handshakes at its active port.

1.1. Handshake circuits 5

;

|*

X

||

Repeater

Sequencer

Transferrer Variable

Parallel

Mixer

*

write port read port

Figure 1.3: Some common handshake components.

• The mixer is able to accept handshakes via its two passive ports (these hand-
shakes must be non-overlapping) and passes them on to its active port.

• When activated via their passive ports, the sequencer and the parallel com-
ponents activate both of their active ports. The sequencer, however, activates
them sequentially, starting with the port labelled with the ∗. After the hand-
shake at that port has been completed, a handshake is started at its other active
port. The parallel component activates both its active ports in parallel, but waits
until both handshakes are completed before the handshake at the passive port
is completed.

The other two components shown in Figure 1.3 have push and pull ports, indi-
cated by the arrows, and can therefore operate on data.

• The transferrer is activated via a nonput channel on its passive port and will
first initiate a handshake on its left active port. This port is connected to a
pull channel and will retrieve a data value from the component connected to
that channel. The received data value is then sent to the active port on the

6 Chapter 1. Introduction

right. This port is connected to a push channel and sends the data value to a
component connected to this channel. In Tangram, the components connected
to the left channel are usually binary data operations or read ports of variable
components. The right channel is usually connected to the write port of a
variable.

• The variable is used to store a data value. Both its ports are passive. The
left port is used as a write port; a handshake at this push channel delivers a
new data value that the variable stores in its internal register. The right port is
used as a read port; a handshake on this port reads the data value stored in the
variable. A variable component can have more than one read port. Variables
are connected to transferrers, usually with various data operations in between.
The internal register of the variable can be based either on latches or flip-flops
and can be of arbitrary word width.

Handshake components are always activated via their passive port(s) and can
activate other handshake components via their active port(s) [8]. This leads to a
layered structure in which a handshake component on one layer activates components
at a lower layer. This is repeated until at the lowest level passive components are
reached. The passive port of the handshake component in the top-layer is connected
to an external channel of the circuit. This channel is referred to as the start-up channel
of the circuit. By initiating a handshake on this channel, the circuit is started. Since
a normal circuit will keep running, the handshake on this channel is usually never
acknowledged. In case this would happen, it indicates that the circuit has stopped
executing. By keeping the request signal of the start-up channel at logic zero, the
circuit is initialized. The initialization process starts at the components at the top layer
and gradually propagates through the other layers of the circuit until all components
are initialized.

1.1.3 Tangram

The Tangram design tools [11] form a powerful way to design handshake circuits.
Circuits are described in a high-level programming language. The language con-
structs directly correspond to handshake components. For example, infinite repeti-
tion offered by the “Forever Do · · · Od” construct is implemented with a repeater
component. This results in a transparency property of the compiler, which allows
the designer to reason about circuit properties such as area, power and performance
at the programming level. This can be used for rapid evaluation of design choices.
The used language is similar to a conventional programming language like C or Pas-
cal, but there are additional language constructs available to describe parallelism and
channel communication.

The Tangram design flow is shown in Figure 1.4. After the design engineer has
written a Tangram program, the program is compiled into a handshake circuit descrip-

1.2. Production testing 7

Compiler

Netlist
Mapper

Handshake
Circuit

Simulator

Tangram
program

Handshake
Circuit

Handshake
Circuit

Analyzer

Area Statistics

Gate-level
Netlist

Netlist
Simulator

Design
Engineer

Specification

Function, Timing,
Energy

Handshake
components

Gate-level
components

Figure 1.4: Tangram design flow. Tangram uses a two step synthesis process, first the
Tangram program is compiled into a handshake circuit, second the handshake circuit
is mapped onto a gate-level netlist.

tion, using a library of handshake components. The handshake circuit description is
simulated and analyzed to get a rough estimate of various properties, like functional-
ity, timing and size of the circuit. The simulation can be very fast, since it uses only
the abstract handshake components and no detailed low-level information.

Handshake circuits can be mapped onto several alternative fabrication technolo-
gies and circuit styles. The process uses a mapping library that contains gate-level
implementations of all handshake components in the target technology. Once every
handshake component is mapped to a gate-level netlist, the resulting netlist is opti-
mized for area and simulated again, now at gate-level. The gate-level netlist forms
the input for the remaining tools that will ultimately lead to a layout for the circuit.
These tools are conventional tools that are normally used for synchronous circuits.

1.2 Production testing

Production testing is a vital step to ensure that any defective ICs are removed from
the production line and not shipped to customers. During the production of an IC,

8 Chapter 1. Introduction

a range of possible defects can occur that may render the IC unusable or limit its
lifetime. Some of the most common defect types are [30]:

• Opens, or highly resistive signal lines

• Shorts, or low resistive bridges between signal lines

• Parameter variations, such as threshold-voltage variations

The actual physical effect of a defect is difficult to quantify; it can range from
resistance variations to parasitic transistors. For this reason, abstract fault models are
being developed. In these models, faults are used that offer a simplified view of how
a defect changes the behavior of a circuit. Many fault models exist, all targeting a set
of potential defects. An overview of these fault models is given in [13]. The most
popular fault model still in use today is the stuck-at fault model [25], even though
it is over 40 years old. This model uses faults that keep an input of a logic gate or
the output of a logic gate at a constant (one or zero) value. Although it cannot detect
certain types of defects, it is popular because of its simplicity and high-quality tool
support. Two derivative models of the stuck-at fault model are the stuck-at input
model and the stuck-at output model. These models only contain the stuck-at faults
at the inputs (stuck-at-input) or at the outputs (stuck-at-output) of logic gates.

During the testing process, stimuli are applied to the circuit and the response of
the circuit with regard to these stimuli is observed. The responses are compared to the
expected responses and if there is a mismatch, the circuit is considered to be faulty.
This process is repeated many times until all testable faults in the used fault model
are tested.

Two parameters are commonly used to express the testability of circuits: the con-
trollability and the observability. The controllability defines the ability to set a signal
in the circuit to a specified value. The observability defines the ability to observe the
value of a signal in the circuit. External inputs to the circuit, called primary inputs,
can always be directly controlled, their controllability is defined to be one. External
outputs of the circuit, called primary outputs, can always be directly observed and
their observability is defined to be one. The controllability and observability of other
nodes in the circuit can range form zero to one. A value of zero means that the node is
untestable. It is usually not possible to apply the stimuli for an internal node directly
at the primary inputs of a circuit. It might require a sequence of patterns or the help
of special on-chip test circuitry to reach the target node. By adding more special test
structures on-chip, the testability of the chip can be increased [69].

Iddq testing

Faults can also be detected by observing the supply current of the circuit, a process
known as Iddq testing [14, 27, 37]. A characteristic of advanced CMOS logic is the

1.2. Production testing 9

very low standby current. Many defects cause this standby current to increase, which
can be measured. Since only the standby current has to be measured, the circuit has
to be in a quiescent state to avoid any dynamic currents. In synchronous circuits this
is simply accomplished by halting the clock. Although observing the fault effects
is easy, the faults still have to be exercised. Therefore the controllability problem is
similar to that of normal logic testing. Iddq testing can detect many defects that are
not covered by the stuck-at fault model, like resistive bridging faults [56] and delay
faults [61, 62].

Unfortunately, for new process generations, Iddq testing is becoming increasingly
limited in practical use. This is because the standby current of these new process gen-
erations is increasing compared to the other contributions to the power consumption.
This makes it more difficult to differentiate between good and bad circuits and re-
duces the sensitivity of the method [21]. Another drawback of Iddq testing is the
relatively long time it takes to carry out a measurement.

1.2.1 Functional versus structural testing

Test methods can be divided into functional and structural methods. Functional test-
ing exercises the functions of a circuit, whereas structural testing is based on the
circuit structure. The distinction between functional and structural testing was first
made in [20].

Functional testing

In functional testing, the circuit is tested in the normal operating mode. There are no
special circuit modifications added to the circuit to support the test. The advantage is
that no additional area is required for test structures and that the function of the circuit
is tested in the same way as it is used in normal operational mode. The tests can be
carried out at-speed, ensuring that critical timing problems can be detected. The
major problems with functional testing are the difficult and labor intensive (manual)
test-generation process and the often limited fault coverage.

Unless something is known of the underlying logic, the only way to fully test
a circuit is to exhaustively exercise its functions. In reality this would lead to im-
practically long test times. Therefore a significantly shorter test has to be applied,
implying a reduced fault coverage. In certain application areas, functional testing is
still an important part of the overall test strategy. For example in a microprocessor it
is used to test the IC at-speed and the result can be used for speed binning to grade
the circuits performance [44].

Structural testing

The main characteristic of a structural testing is that faults from a selected fault model
are tested in conjunction with the structure (gates and interconnect) of the circuit.

10 Chapter 1. Introduction

The goal is to detect all faults in the model, using the minimal time and cost. The
test patterns that are used for this are usually generated by an automatic test-pattern
generator (ATPG) tool.

The ATPG tool uses a fault list to keep track of the obtained fault-coverage. The
first step is to combine faults that have the same effect on the circuit, the so called
equivalent-fault removal step, to reduce the number of faults in the fault list. After
this step, the patterns are generated. Every time after a new test pattern is generated,
the pattern is simulated to determine which other faults it can detect. These faults are
subsequently removed from the fault list. This process continues until the fault list is
empty or only contains untestable faults, which can for instance be caused by redun-
dancy in the circuit. Many algorithms have been proposed, most of them targeting
combinational circuits. The first and best-known combinational ATPG algorithms are
the D-algorithm [54], PODEM [26] and FAN [22]. Current state of the art algorithms
can achieve an estimated speed up of over 25000 times over the early D-algorithm
[65].

1.2.2 Full-scan testing

Design for Testability (DfT) refers to using a design style in which hardware mod-
ifications are included in a circuit to make the circuit better testable. Controlling
primary inputs and observing primary outputs is always possible. However, for in-
ternal nodes of sequential circuits it can be very difficult to control and observe the
value at the node. It can take an arbitrary long sequence of inputs to set the state of
the internal node. In addition it is difficult to compute such a sequence and it can
take a long time to actually apply the sequence to the circuit. In [69] test points are
inserted in a circuit. A test point makes a point fully controllable and observable.
Full-scan test systematically adds test points to the circuit. The effect is that the test
problem is reduced to the well-known problem of testing a combinational circuit. The
modification consists of adding a multiplexer to every register in the circuit. These
multiplexers are used to implement are serial shift register through all the registers in
the circuit. The shift register can be used to shift data in and out of the circuit. The
multiplexers are controlled by a new control signal called the test enable te.

The full-scan test principle is shown in Figure 1.5(a). The shift register makes it
possible to control the outputs of all registers and observe the inputs of all registers.
The outputs of the registers operate as pseudo inputs for the combinational logic.
Together with the primary inputs, all inputs of the combinational logic can now be
controlled. The inputs of the registers operate as pseudo outputs. With the pseudo
outputs and the primary outputs all outputs of the combinational logic block can be
observed.

A scan-testable circuit has two modes of operation, controlled by the test enable
(te) signal. The first mode is the scan-mode, used to serially shift data in and out
of the registers. The second mode is the normal-mode, in which the circuit operates

1.2. Production testing 11

PI PO

TDOTDI

te Clk

Combinational
logic

Registers
PO

PI

te

Clk

Tdi

Tdo

(a) Scan test circuit

in

(b) Scan test protocol

in

in

out

out out

scan mode scan mode

scan-in
phase

evaluation
phase

scan-out
phase

normal mode

Figure 1.5: Full-scan test principle. (a) The circuit is modified to include a scan input
(DTI) a scan output (TDO) and a test enable signal. (b) Scan test protocol showing
when scan signals are valid.

normally. A scan test is executed following a test protocol, shown in Figure 1.5(b).
It consists of three phases. In the scan-in phase, the registers are loaded with a test
pattern via the external scan-in pin TDI . The second phase is the evaluation phase,
which consists of one clock cycle executed with the circuit in normal-mode. During
this phase, the primary inputs (PI) and outputs (PO) are also active. After this phase
the registers contain the response of the circuit to the test pattern. The third and last
phase, the scan-out phase, again uses the scan-mode to shift the response out via the
external scan-out pin TDO. Scan testing (of a synchronous circuit) requires investing
in circuit area in the form of a multiplexer for every register, wiring for the test-enable
signal to control the multiplexers and wiring to connect the registers to each other.

Any circuit that obeys certain rules can be made scan testable. The following
scan test rules are valid for synchronous circuits based on flip-flop registers:

• Only D-type master-slave flip-flops can be used as register elements.

• At least one primary input and output pin have to be available for test. These
will be used as the scan-in and scan-out pin.

• All flip-flop clocks must be controllable from a primary input.

12 Chapter 1. Introduction

• Clocks must not be connected to the data input of flip-flops.

An alternative scan method uses latch-based registers. This method is called
level-sensitive scan design (LSSD) [19]. Every LSSD scan register consists of two
latches: a master latch L1 and a slave latch L2 as shown in Figure 1.6(a). The master
latch has two enable signals, clk1 and Te, the first to capture data at the normal data
input d, and the second to capture data at the scan-data input ti. The slave latch is
clocked with a third enable signal clk2. The three enable signal may not be active
simultaneously.

1.2.3 Other scan methods

In this thesis two scan methods are mentioned that are derived from the full-scan test
method. These are the L1L2* scan and partial scan methods.

L1L2* scan

L1L2* scan , described in [16], is an optimization of the LSSD scan method. A
large part of the area overhead in LSSD scan is caused by the slave latches that are
required for every master latch. In the LSSD method, master latches are referred to
as L1 latches and the slave latches as L2 latches.

The principle of the L1L2* scan method is shown in Figure 1.6(b). The slave latch
is now also scannable. It is called a L2* latch to distinguish it from a non-scan normal
slave latch. A portion of the logic is placed between master L1 and slave L2* latch,
the other portion remains at the normal position between the two latches. L1 and
L2* latches have independent test enable signals, to allow one to stay in scan mode
while the other can be in normal mode. The advantage of the L1L2* scan method is
that in the ideal case no slave latches are required anymore. This results in a lower
area overhead, lower power consumption and less impact on circuit performance as
compared to the LSSD scan-test method. In a real circuit it is generally not possible
to find an ideal partitioning of the circuit. In that case some master latches still require
a dedicated (non-scan) slave latch.

Partial scan

In the partial-scan technique , only a subset of the total number of registers is scanned.
This is used to find a balance between the complexity of test-pattern generation and
the area overhead. By only scanning a part of the registers, the area overhead de-
creases, while the test generation becomes more complex. Usually in partial scan,
scan is applied to break at least all large cycles in a circuit [15]. In order to find such
a partitioning, a number of heuristics exist [3]. The elements that are not scanned are
selected such that it is still possible to test them via the primary inputs and the pseudo
inputs, formed by the outputs of the registers that are still being scanned. Since the

1.2. Production testing 13

TDI

te TDO

(a) LSSD scan

d q d q

clk 1

te
ti

d q d q

te
ti

clk 2 clk 1 clk 2

TDI

te 1 TDO

(b) L 1L 2* scan

d q

clk 1

te
ti

d q

te
ti

clk 2

L 1 L 2 L 1 L 2

L 1 L 2*

te

te 2

Figure 1.6: The LSSD (a) and L1L2* (b) scan-test principles. In LSSD scan every
scan element consists of a master and a slave latch. In L1L2* scan, scan elements
only consists of a master element.

resulting circuit is no longer combinational during scan test, in general sequential
ATPG is required to generate the test patterns.

If special restrictions are placed on the selection of the non-scan elements, it is
still possible to use combinational ATPG to generate the test patterns. An example of
such an approach is the “SmartScan” method described in [40]. The resulting sections
that are not scanned are pipeline structures. The internal registers are considered to
be transparent during test-pattern generation. During test execution, the generated
test pattern needs to be kept valid for a number of cycles, until the values reach the
end of the pipeline. The method is less suitable for circuits in which large pipeline
structures are not common; this for example holds for the control part of a handshake
circuit.

1.2.4 Economy of testing

The cost of testing is becoming an increasing part of the total manufacturing cost of
an IC [58]. Intel reported that the major part of capital cost for a new fab is spend on
verification and manufacturing testing equipment [60]. There are many factors that
determine the total cost for test. Unfortunately many factors are mutually dependent
and differ from one product to the other. This makes it difficult to minimize the

14 Chapter 1. Introduction

cost, leading to research to analyze the various contributions to the test cost [1, 18].
An economic model is described in [66] that allows the evaluation of alternative test
strategies. The main criteria that are evaluated are:

• Test quality

• DfT cost

• Test-development effort

• Test-equipment cost

With respect to these criteria, handshake circuits are no different than conven-
tional synchronous circuits. Therefore these criteria are directly and equally appli-
cable for handshake circuits. The mentioned test criteria are further discussed in the
following sections.

Test quality

Obtaining a high test quality is an economic necessity to be profitable. Often this is
explained with the “Rule of 10”. If a defective chip is not discarded, it usually costs
10 times as much to discard (or repair) the board containing the defective chip and
again 10 times more to discard (or repair) a system containing a defective board.

Production processes will produce a mix of good and faulty dies, the fraction of
good dies out of the total number of dies is called the yield. The testing process
must remove the faulty dies from the production line, leaving only the good dies.
Additionally the test must not remove any of the good dies. The final quality is often
expressed in the number of defect parts per million (ppm) of total shipped parts. The
final goal is to reach a single digit ppm. By analysis of the defective ICs, useful
information can be obtained that can be used to improve the fabrication process, the
design rules used to design a IC in that process and the test vectors that are used to
test the IC. This will gradually improve the yield of a given process.

DfT costs

The logic required to implement the DfT features in a circuit, increases the total
silicon area of the circuit. Except for the direct cost of the additional area, this also
has a negative impact on the yield of the chip. The yield depends on the sensitive area
of a chip, the part of the chip were a defect can result in a faulty chip. Even if the
added DfT circuitry uses previously unused space, the silicon area might not increase
but the sensitive area will. This can therefore still have an impact on the yield.

Besides additional area, the modifications will also have a negative impact on
the circuit performance and power consumption. The multiplexers in the scan chain
increase the critical-path delay. The power increases even when the multiplexing

1.2. Production testing 15

logic is not used because the additional logic increases the capacitive load on other
signals.

Special pins might be required to control the DfT logic. Most pins will be multi-
plexed onto existing pins, but a few additional control pins are usually added. Adding
pins can be costly, as they increase the die size by requiring additional pads. If the
pins also need to be available in the final packaged chip, then the additional pins also
have to be available in the package and bonded to the package.

Test-development effort

The test-development effort represents the work that needs to be done by the design-
ers to make a circuit testable and to generate the test patterns and the work done by
the test engineer to debug the test program and get it running on a tester. The amount
of work that this requires can directly increase the time-to-market. Although some
tasks can be done in parallel with the completion of the chip, the generation of func-
tional patterns for example can still be the critical path to get the product shipped.
The amount of required work is becoming an increasingly important criterion for test
methods. Especially in those cases were the time-to-market might otherwise increase,
since that would directly limit the maximum market revenue [18].

The best way to minimize the test-development work, is to use automated and
standardized test tools. In practice this means a form of DfT insertion combined with
ATPG. Ideally this would be a push-button method, but in most cases at least some
manual interaction is required, for example to integrate the test with other blocks
(like memories or analog circuits) at the top-level of the IC.

Test-equipment costs

Another part of the cost is the required expensive test equipment and the cost to
operate this equipment. To reduce these costs, test times spend on this equipment
needs to be minimal and the available test equipment should be maximally reused.
There are four main contributions to the equipment cost:

• Purchase of the equipment; the price for example depends on the required
speed, number of pins and amount of memory per pin.

• Depreciation

• Labor cost and environment cost (eg. cooling) to operate the equipment

• Utilization factor

As mentioned before, the equipment costs represent a major part of the total cost.
It is therefore important to design test methods that limit the requirements of the
equipment and if equipment is already available, the test of new ICs should preferably
run on that equipment to improve the utilization factor.

16 Chapter 1. Introduction

1.3 Motivation

The output of the Tangram design flow is a gate-level netlist. For the remaining
tasks like timing analysis, logic optimization and layout, commercial tools are used.
This part of the design process is increasing in importance in practice, since circuit
performance in new technologies becomes more and more dependent on actual layout
and wire length and less on the gates in a design. One of the tasks that has to be
preformed during this phase is the development of a production test strategy. This
consists of test-pattern generation and possible hardware modifications to ease the
test-pattern generation. Neither of those is supported by the Tangram toolkit. There
are also no commercial tools that are able to provide these functions for handshake
circuits.

For an economical test, a balance between all the criteria in the last section has to
be found. Previous attempts to develop a test method for handshake circuits, focused
primarily on the minimization of the additional area required for test modifications.
This led to methods that require a large amount of manual test-development work
and that had problems in obtaining a sufficiently high fault coverage. For current
products, the reduction of test development work and the increase in fault coverage
are becoming more important than the increased circuit area. Therefore a new test
method should focus on reducing the test-development work and on increasing the
test quality, even if this increases the cost for additional test circuitry.

The need for a structural test method is increasing further, because the num-
ber and diversity of the circuits designed with the Tangram toolkit are increasing.
Many of the initial Tangram designs had little need for an automated structural test
method. Most of these designs were built around an 80c51 micro-controller. For this
controller a functional test program was available that could achieve adequate fault
coverage. Newer designs, however, become increasingly larger and more complex.
Furthermore they start to span a wider application area, leading to less commonality
between the designs. These developments make manual test development impracti-
cal. For a continued and successful widespread application of the Tangram design
technology, an automated structural test method is essential. The lack of an effective
test method for handshake circuits is beginning to hold back the uptake of the tech-
nology. Whenever the technology is evaluated for potential use in a new application
area, the testability of the circuits is a major requirement.

If handshake circuits are used in a new application area, they usually replace the
existing design style. The transition has to be as smooth as possible. This not only
holds for the knowledge of the designers but also for the existing infrastructure. Fur-
thermore, conventional synchronous circuit and handshake circuits can share a lot of
the facilities used for production and test. In order to economically test handshake
circuits, the test method has to work on the same equipment that is used for syn-
chronous circuits. If the asynchronous test strategy requires additional features of
equipment, the cost of testing can rise significantly.

1.4. Objectives 17

1.4 Objectives

The objective of this work is to develop an automated structural test method for hand-
shake circuits. To be industrially acceptable, there are several properties that the test
method must fulfill. These properties can be divided into essential requirements and
optimizations to reduce cost. The requirements for the test method are the following:

• High (structural) fault coverage. Initially, the stuck-at fault model is used and
the fault coverage should be at least conform the industry standards. In this
thesis full (100%) coverage is targeted. If this coverage is not obtained, the
analysis of untestable faults can lead to a deeper understanding of the specific
test problems of handshake circuits and improvement of the test method, as is
shown in Section 4.3.5.

• Automated test flow. This enables a high productivity and consequently re-
duces the time-to-market. It also produces a test solution with constant cost
and quality, enabling more accurate planning of projects. This in turn again
leads to better design decisions and a higher productivity.

• Compatibility. To keep the cost down and improve the acceptance of the
method by designers, the method has to be compatible as much as possible
with existing test tools and practices and with existing test equipment.

These requirements are essential for a successful test method, but in addition it
is also very important to reduce the cost of the test method. As discussed in Sec-
tion 1.2.4 there are many contributions to the test cost. The contributions that are
most important for this work and should be minimized are the following:

• Area overhead. Additional silicon area is required to implement the test hard-
ware. This includes area for gates, wiring and pins.

• Impact on performance. The additional test circuitry can have a negative in-
fluence on the performance of the circuit. This might have an impact on the
targeted application area.

• Power consumption. Besides an impact on performance, the additional test
circuitry can also increase the power consumption. Since many applications
use handshake circuits because of their low-power consumption, an increase
in power consumption can reduce the possible application areas of handshake
circuits.

These objectives have led to an approach in which a clock is inserted in a hand-
shake circuit that is used to add a synchronous mode of operation to the circuit. This

18 Chapter 1. Introduction

allows the application of scan techniques to simplify the test problem into the well-
known combinational test problem.

The method requires a modification of all sequential elements in the circuit. For
those that are not found in synchronous circuits, like C-elements [63], new scan ele-
ments have been designed. The scan-test method is implemented in such a way, that
not only makes it possible to test all faults in the modified circuit, but also guarantees
an unmodified functional asynchronous mode of operation. During the normal asyn-
chronous operation, however, the performance and power consumption of the circuit
could be negatively influenced.

1.5 Original contributions

The original contributions made in this thesis are:

• The development of a full-scan test method that allows the testing of large
handshake circuits with high quality and automatic test-pattern generation. In
addition the method is compatible to existing tools and standards, which allows
simple integration with other blocks on the chip.

• Allow the testing of locally generated clock signals, by adopting an approach
in which the control block and data path are tested separately.

• Introduction of new scan cells that are used to significantly reduce the area
overhead of the test modifications.

• Special modifications to test specific asynchronous structures, like the mutex
elements. Also in some cases the netlist generator has been modified to gener-
ate better testable circuits.

• Implementation of a new test tool TgScan, which is used as a scan insertion
tool and that generates files to interface with existing test tools that are used to
generate the test patterns and produce the final test vectors.

1.6 Thesis outline

The structure of this thesis is as follows:

• Chapter 2: Introduction in the testing of handshake circuits. The specific test
problems associated with asynchronous circuits are discussed and a number of
previously proposed solutions are evaluated.

• Chapter 3: Scan test is applied to handshake control circuits. This requires the
design of scannable C-elements. Several alternative implementations for these
elements are given and it is shown how to incorporate them in a circuit.

1.6. Thesis outline 19

• Chapter 4: Scan is applied to the complete handshake circuit. A method is pre-
sented that can test any handshake circuit designed with the Tangram toolkit.
Both the required circuit modifications and ATPG approach are discussed.

• Chapter 5: To be able to apply the test method on a number of benchmark
circuits, a new tool called TgScan is presented. This tool modified the original
handshake circuit into a scan testable circuit. Also presented are the scannable
C-elements that are required to execute the experiments. Subsequently, these
are used to make several benchmark circuits scan testable and the results of
these experiments are given. Finally some work is presented on an industrial
demonstrator circuit.

• Chapter 6: Conclusions are given and recommendations presented for future
work.

• Appendix A: The Philips CAT tools are applied to scan testable handshake cir-
cuits. The tools use a number of control files to correctly recognize handshake
circuits.

Chapter 2

Testing of handshake circuits

Like all other circuits, handshake circuits have to be tested for manufacturing faults
after coming out of the production line. This has to be carried out fast and with
high quality in order to keep the cost low and deliver functioning products to the
customers. Design and test need to be considered together to meet the cost and quality
requirements. Designing a circuit without accounting for test will usually result in an
untestable circuit, likewise testing a circuit without looking at its design is likely to
result in an expensive test solution.

Several test methods have been proposed that analyze the testability of the circuit
at the handshake level [53, 68, 17], which is easier to analyze than a gate-level circuit.
The conventional stuck-at fault model however is modelled at gate level and existing
the test-pattern generation tools for this fault model work with gate-level circuits. For
this reason, in this thesis testing is only discussed at gate-level.

In this chapter the gate-level implementation of a handshake circuit is reviewed
first. This is followed by a set of properties that handshake circuits exhibit and that
need to be considered during the design of the test method. These properties are then
used to evaluate some test methods previously proposed in literature. Finally this
leads to a discussion of the test approach followed in this thesis.

2.1 Gate-level implementations of handshake circuits

Gate-level implementations are derived from handshake circuits by substituting every
handshake component in the circuit by a corresponding gate-level implementation of
the component. Handshake components are designed to be generic and provide well-
defined interfaces to other components. Hence, for every handshake component a

21

22 Chapter 2. Testing of handshake circuits

+

C
;

a

b c

breq

back

creq

cack

areq aack

*

(a) (b)

areq

b req

back

aack = c ack

s

creq

(c)

Figure 2.1: Symbol of a sequencer component (a) its gate level implementation (b)
and a simulation of one complete handshake (c).

gate-level version can be designed and implemented independently. The technique
used for this implementation can in principle be chosen from literature, but the com-
ponents used here have been mostly designed using handshake expansion [42].

Figure 2.1(a) and (b) show the symbol and gate-level implementation of the se-
quencer component that was introduced in Chapter 1. The simulation shown in Fig-
ure 2.1(c) shows how after starting a handshake on channel a by raising areq, first a
complete handshake is preformed on channel b, followed by a handshake on chan-
nel c. The arrows show the sequence of events during the simulation. The imple-
mentation requires three gates, two of which are normal combinational gates. The
other gate is a so-called C-element, which is a sequential gate similar to a set-reset
latch. C-elements are commonly used in asynchronous circuit design, usually in
several variants. The output of the C-element in Figure 2.1 becomes one if areq is

2.1. Gate-level implementations of handshake circuits 23

zero and it becomes zero if both areq and back are one. Since the function for set-
ting and resetting are different, this type of C-element is an asymmetric C-element.
Other types C-elements are also used, for example those with symmetric set and reset
functions, therefore called symmetric C-elements. The function and implementation
C-elements are further explained in Section 3.2.4. The symbol used for a symmetric
C-element is an AND-gate symbol with a “C” written in it. In case of the asymmetric
C-element in Figure 2.1, the symbol is modified with a + to designate the input that
only helps to make the C-element to evaluate to one internally.

Gate-level implementations of handshake circuits are generated by replacing all
individual components with their gate-level implementations. An example of a hand-
shake circuit implementation is shown in Figure 2.2. The figure shows a one-place

+

C

;

x

a

b

breq

back

creq

cack

areq

bdata

cdata

c

Control block

Data path

*

*

d q

*

;

x

Figure 2.2: Example of a handshake circuit consisting of five handshake components
and its gate-level implementation. In the implementation every dotted box contains
the implementation of a handshake component.

24 Chapter 2. Testing of handshake circuits

buffer, which is a circuit that repeatedly copies the value read at input b to output c.
The circuit consists of a repeater, a sequencer, a variable and two transferrer compo-
nents. The repeater generates a continues stream of handshakes. The sequencer sends
these handshakes first to the left transferrer, to load a new value from the input b into
the variable and then to the right transferrer, to copy the value in the variable to the
output c. In the circuit diagram, the logic corresponding to the individual components
is identified by the dashed boxes.

The implementation of the sequencer has already been shown in Figure 2.1. The
repeater contains only one gate. When activated by making areq high, it operates as an
inverter between the acknowledge signal coming from the sequencer and the request
signal going to the sequencer. This will automatically generate a new handshake to
the sequencer, when the previous handshake finishes. Note that the repeater does not
have a top-level acknowledge signal, since the program never ends and a top-level
acknowledge signal would therefore never become high. The variable consists of
either latches or flip-flops and some control circuitry to generate a local clock signal
for these latches or flip-flops. The transferrers are implemented with wires only.

In the remainder of this thesis, the difference between control logic and data path
logic plays a central role. In handshake circuits, there is a fundamental difference
between the two. Control logic operates on handshake signals, data path logic works
on Boolean signals. The difference between control and data is already evident at
the handshake level. Both handshake channels and handshake components can be
divided into a control part and a data part. For nonput channels and handshake com-
ponents that only have nonput ports, the data part is empty. Consequently these
channels and components only consist of a control part. In Figure 2.2 the transferrer
components, the variable component and the channels in between these components
can be split up into a control part and a data part. At circuit level this leads to a con-
trol block that contains the control parts of all handshake channels and components
and a data path that contains the data part of all handshake channels and components.
In Figure 2.2 the dotted line shows the partitioning in control block and data path.

The resulting partitioning is shown schematically in Figure 2.3. The interface
between the control block and the data path consist of the following three types of
signals:

Conditions The control block uses the condition signals in combination with its
internal state to determine the next action.

Parameters Parameters are used by the control block to control the Boolean logic in
the data path. The most common use is to set multiplexers in the correct state.

Local clock signals The local clock signals are used by the control block to enable
a data-path register to capture a new data value.

The control block determines the operation and activation of the rest of the cir-
cuit. Once activated via the start-up channel labelled “Start”, it will start to interpret

2.2. Test properties of handshake circuits 25

State

Acknowledge

RequestStart

Local
clock(s)

Reset
Inputs

Outputs

Conditions Parameters

Logic

Handshake
control

Register

Data path

Control block

Latch
control

Figure 2.3: The gate-level implementation of a handshake circuit can be partitioned
into a control block and a data path, both of which have a specific structure and
properties.

conditions from the data path, set the parameters to the data path and send clock
signals to the registers by activating the appropriate latch controllers. The data path
in a handshake circuit is very similar to that of a conventional synchronous circuit.
The only difference is that the registers are clocked by clock signals generated by the
control block.

In the partitioning, the variable components have a special place. They are im-
plemented by the latch control and the register blocks that are shown separately in
Figure 2.3. The latch control block contains the control logic of a variable that is
used to increase the drive strength of the clock signal to match the load of the register
elements connected to it in the data path. The register block only contains the register
elements of the variable.

2.2 Test properties of handshake circuits

Handshake circuits have some test properties that are not found in synchronous cir-
cuits. Unfortunately most of these properties, which are discussed in this section,
complicate the use of standard synchronous testing methods like full scan. Only one
property, the acknowledgement property, offers new possibilities for testing although
only for specific circuit styles and fault models. The other four properties in this
section complicate or even prevent the use of the standard test methods.

26 Chapter 2. Testing of handshake circuits

2.2.1 Acknowledgement property

The acknowledgement property [43] states that if every signal transition in a circuit is
acknowledged by another signal transition, then the resulting circuit will operate cor-
rectly regardless of the delay in the wires. This property is useful for testing, because
any stuck-at fault that is present will prevent a signal transition and this halts the
circuit operation. In most cases this inactivity will quickly propagate throughout the
circuit, leading to a circuit deadlock. Unfortunately the acknowledgement property
only holds for the class of delay-insensitive circuits. As proven in [41], circuits in
this class can only be constructed out of symmetric C-elements and inverters, which
limits the type and efficiency of the possible circuits.

In handshake circuits a derivative circuit design style is used that allows the use
of isochronic forks [7, 42]. In an isochronic fork, a transition is send to multiple
receivers but only one of these receivers responds by sending back an acknowledge.
The presence of isochronic forks leads to more efficient circuits but these are no
longer completely delay insensitive. The design style is therefore called quasi delay
insensitive (QDI) [42].

In an isochronic fork, a transition is not acknowledged by both outputs of the fork
but it is assumed that if one output is acknowledged the other output is implicitly also
acknowledged. As a result these forks do not have the acknowledge property. Like-
wise, circuits that contain these forks only partially have the acknowledge property.
In these circuits, a fault will not automatically lead to a deadlock situation but can
instead also lead to a misbehaving circuit. In such a circuit a gate with a fault may
change its value before it is supposed to do so. This situation is called a premature
firing of the gate [29].

In Figure 2.4 the difference between an isochronic fork and a non-isochronic fork

C

+

C

a

b

z

a

b
z

(a)

(b)

Figure 2.4: Forks connected to a symmetric C-element (a) and an asymmetric C-
element (b). A stuck-at fault on the fork before gate (a) prevents any output transition,
this fork is non-isochronic. A stuck-at-1 fault on input a of the fork before gate (b)
results in a modified behavior, this fork is isochronic.

2.2. Test properties of handshake circuits 27

+

C
s

sa0

areq

aack

b req

back

areq

b req

back

aack

s

areq

b req

back

aack

s

Overlap between

x

(a) Circuit with stuck-at fault

(b) Correct functionality (c) Functionality in presence of fault

aack and b ack

Figure 2.5: Modified circuit behavior because of a fault, (a) example circuit, (b)
correct behavior, (c) faulty behavior.

is illustrated. Figure 2.4(a) shows a fork that connects to both inputs of a symmetric
C-element. This type of C-elements switches when both inputs have the same value.
When a stuck-at fault is present on one of the inputs, this input can never switch to the
opposite value and therefore the output can also not switch to this value. A transition
is prevented and this will eventually lead to a circuit deadlock. Since any fault on the
inputs leads to a deadlock, the fork connected to the inputs of the C-element is non-
isochronic. An example of an isochronic fork is shown in Figure 2.4(b), connected to
an asymmetric C-element. To switch this type of C-element to zero, only the b input
has to be zero and the a input can be undefined. If there is a stuck-at-1 fault on the
a input of this C-element, the output of the gate can still switch. The difference with
respect to a correct C-element is that this C-element switches to one when b is one,
while the correct C-element only switches when both a and b are one. The stuck-at
fault does not lead to a deadlock, the fork connected to the inputs of the C-element is
therefore isochronic.

A larger example of a circuit that changes its behavior in the presence of a fault

28 Chapter 2. Testing of handshake circuits

is shown in Figure 2.5(a). This figure shows a handshake circuit in which the fork in
the back line is an isochronic fork; the effect of back rising is only passed on via s to
breq and not to aack. In the example, a stuck-at-0 fault is present at the output of the
isochronic fork leading to the NOR gate. The simulation traces show the behavior of
the circuit without the presence of the fault (Figure 2.5(b)) and with the fault present
(Figure 2.5(c)). In the first case, the handshake on channel b is completed before the
handshake on channel a is finished. In the second simulation, the falling transition
of s causes two parallel events: a rising edge on aack and a falling edge on breq.
This causes the handshake on channel a to overlap with the handshake on channel b,
leading to unpredictable results in other parts the circuit.

Faults that do not cause a deadlock can still be detected if their effect can some-
how be propagated to an observable output. The fault in this example can be detected
if both outputs can be directly observed. The fault leads to a different transient be-
havior and an event-driven evaluation is required to capture this behavior.

The presence of isochronic forks limits the usability of the acknowledgement
property for QDI handshake circuits to the testing of stuck-at output faults. These
faults will always prevent the output of a gate from switching and therefore lead to a
deadlock situation. In practice the use of stuck-at output fault is not sufficient since
there are many defects that are not represented by this model. A more detailed fault
model has been proposed [53], called the isochronic transition fault model. This
model also takes stuck-at input faults into account on non-isochronic forks but not on
isochronic forks. This however still does not provide a sufficient fault coverage. To
achieve this, the stuck-at input faults at isochronic forks also need to be tested.

2.2.2 Autonomous behavior

By definition, asynchronous circuits have no clock to synchronize the circuit opera-
tion. Instead the circuits behave highly autonomous. In handshake circuits, correct
internal timing is achieved by explicit acknowledgement of the handshake signals
and dimensioning of internal delays to satisfy relative timing assumptions inside the
handshake components. The level of external control is very limited. Only when
the circuit communicates to the external world, some influence can be exerted on the
circuit. It is not possible to stop the circuit in every state and it is also not possi-
ble to single step the circuit from one state into the other. In this sense, handshake
circuits do not have a global state; instead they have many local states that are only
synchronized when required. The total state of a handshake circuit can only be deter-
mined by examining the state of all handshake components and handshake channels
together. For example, a sequencer contains one internal state bit which, in combi-
nation with the state of the handshake channels, is used to determine the next action
of the component. This happens independently of other handshake components or
global signals.

The autonomous behavior of handshake circuits presents a problem for the full-

2.2. Test properties of handshake circuits 29

scan test method since this method is cycle based. Inputs for the circuit are applied
once per clock cycle and after each clock cycle the expected response is calculated
and compared to the observed outputs of the circuit. If no clock is present, it is
generally more time consuming to calculate how the circuit will respond to input
stimuli. In addition, event-driven testers may be required to capture these responses
because the signals can change at any time not just once every cycle. Since these
testers are dedicated and hence expensive and in addition require complicated test
programs they are not an option to test a low-cost product.

2.2.3 Sequential behavior

Sequential behavior is also present in synchronous circuits, but in a handshake circuit
the problem is more severe. This is related to the autonomous behavior explained in
the last sections, but also caused by the fact the handshake circuits use more sequen-
tial elements than the average synchronous circuit.

The control logic used a handshake circuit makes frequent use of C-elements.
A C-element is a sequential element; its output is a function of both the inputs and
the internal state of the element. For some input combinations the output of a C-
element is determined only by the inputs. For other input combinations the output is
determined by the internal state. Figure 2.6(a) shows the truth table for an asymmetric
C-element. This element has one state holding state: {0,1}.

sa1

areq

aack

b req

back

sa0

sa0/1

(sa0/1)

sa0

sa1

C-element

a

b
z

a b z

0 0 1

0 1 z-1

1 0 1

1 1 0

(a) (b)

sa0

sa0

sa1

c

a

b

a

b

z

z

Gate-level implementation of the C-element

Figure 2.6: Single pattern fault coverage of a circuit containing a C-element, (a) truth
table of the C-element, (b) test circuit showing the untestable faults.

For testing this means that whenever a C-element is present in a circuit, this
circuit can no longer be fully tested with single-pattern tests. Single-pattern tests
cannot independently control the primary inputs of the circuit and setup the correct
internal state. To solve this, a sequence of patterns is required where the first patterns

30 Chapter 2. Testing of handshake circuits

Table 2.1: Single-pattern fault coverage of the circuit in Figure 2.6(b), leaving many
untestable faults.

C-element AND NOR

areq back a b c z a b z a b z

0 0 sa0 sa1 sa1 sa0 sa1

0 1 sa1 sa1 sa1

1 0

1 1 sa0 sa1 sa1 sa1 sa0 sa1

Untestable sa0/1 sa1 sa0/1 sa0 sa0 sa0 sa1 sa1 sa0

are used to setup the correct internal state for the test via the primary inputs and the
last pattern is used to control the value of the primary inputs during the test.

If only single-pattern tests are used, the presence of C-elements results in a lim-
ited fault coverage. This is illustrated in Figure 2.6(b), which shows the same circuit
that was also used in Figure 2.5. The circuit in this example contains one C-element
and therefore one internal state bit. To determine how many faults can be detected
in this circuit by single-pattern tests, the C-element is first replaced by its gate-level
representation, which reveals the internal feedback loop. This representation leads to
less pessimistic results, since it can be seen that for three of the four input combina-
tions of the C-element the output is a combinational function of the primary inputs
only and does not depend on the internal state of the C-element.

Table 2.1 shows the four possible test patterns and the faults each pattern detects.
The bottom line shows the undetectable faults. Including the faults on the feedback
line of the C-element, 11 out of the total number of 20 stuck-at faults are not testable,
5 of which are located in the C-element. This results in a fault coverage of 45%.
When the C-element is treated as a single gate the faults on the internal feedback line
are not visible, resulting in an 50% stuck-at fault coverage. The fault coverage that is
obtainable with single-pattern testing reduces further if the sequential depth, that is,
the number of sequential elements in series, increases. If tests with two patterns are
used, then all faults in Figure 2.6(b) are testable. This is shown in Table 2.2. The first
pattern is used to set the feedback input c of the C-element. This signal is then used
as a third input to the circuit.

Sequential behavior can also occur if gates are connected in a loop. As will be
shown in Chapter 4, at least two situations exist in Tangram handshake circuits where
such a loop might occur. When present, a circuit loop leads to the same problems as
shown in the previous example. Testing a circuit with this kind of sequential behavior
requires either complex multiple-pattern test generation or a hardware modification

2.2. Test properties of handshake circuits 31

Table 2.2: Two-pattern fault coverage of the circuit in Figure 2.6(b), all faults are
now testable.

C-element AND NOR

areq back c a b c z a b z a b z

0 0 0 sa1 sa0 sa1 sa1 sa0 sa1

0 0 1 sa0 sa1 sa1 sa0 sa1

0 1 0 sa1 sa1 sa1

0 1 1 sa1 sa1 sa1

1 0 0 sa1 sa1 sa1 sa1 sa1 sa0

1 0 1 sa1 sa0 sa0 sa0 sa0 sa0 sa1

1 1 0 sa0 sa1 sa1 sa1 sa0 sa1

1 1 1 sa0 sa0 sa1 sa1 sa1 sa0 sa1

that can break all these loops temporarily during test, of course without influencing
the normal asynchronous behavior.

2.2.4 Redundancy

Redundancy in a circuit reduces the number of testable faults in that circuit. In [31]
it is even stated that a circuit is redundant if it contains an undetectable stuck-at
fault. Therefore, for testing the definition is used that a circuit is redundant if it is not
possible to obtain a 100% stuck-at fault coverage. In this sense a structure made of for
example two inverters in series is not considered to be redundant for testing, since this
structure is 100% stuck-at testable. When analyzed at logic level, without looking at
the dynamic behavior, redundancy can always be removed by either removing a gate
from the circuit or by removing an input of a gate.

In asynchronous circuits also the dynamic behavior of the circuit can be impor-
tant. When the circuit switches, hazards and races can potentially change the state
of the circuit [63]. Preventing these problems can lead to implementations where
additional gates are added to the circuit, that would be redundant if analyzed at logic
level. Such an example is shown in Figure 2.7.

In this circuit the term a·b has been added to prevent a hazard if c is changed while
a and b are true. The result is that the stuck-at-0 faults at the inputs a and b of the top
AND-gate in Figure 2.7 are untestable. The redundancy cannot be removed without
altering the safe operation of the circuit. Hazards can cause multiple transitions on the
outputs of a combinational circuit before they settle in the final state. In asynchronous

32 Chapter 2. Testing of handshake circuits

a

b

c

a

c

b

0

0 1

1 0

1 1

0
F

F

Redundant term

Redundant gate

sa0
x

x
sa0

Figure 2.7: Redundancy added to prevent hazards in the circuit.

circuits these intermediate results can be falsely interpreted by the following circuits
and lead to wrong results.

When testing a circuit that contains redundancy to prevent against hazards and
races, no differentiation can be made between correct hazard-free circuits and circuits
that have a fault present but are still functionally correct only no longer hazard free.
One method to test these faults is by using variable phase splitting [36]. With this
method, normal and negated versions of the same input of a combinational circuit
are controlled independently during test. This increases the control over the circuit
and makes it possible to also test those gates that are redundant in normal mode. The
disadvantage is that it requires special and expensive scan cells that can independently
control two signals instead of the normal one.

Handshake circuits are constructed by connecting handshake components chosen
from a relatively small set of different types. This makes it possible to analyze these
components thoroughly and to choose implementations that are free of redundancy.
As will be shown later in Section 4.3.5, it is still possible that redundancy occurs in
more complex handshake circuits.

2.2.5 Arbitration leading to non-determinism

In an asynchronous circuit it is possible that a single resource has to be shared by two
or more parties. It is important to always guarantee that only one party is given ac-
cess. The second has to wait until the first one is finished. The problems requires the
synchronization of two unrelated signals, which can result in the problem of metasta-
bility [35]. Metastability results in an undefined state at a signal line and it can take
arbitrary time for the signal to go back to a defined (one or zero) state.

In asynchronous circuits, a mutex is used to prevent such an undefined signal
from entering the circuit. A mutex can be implemented in a number of ways, but in
Tangram the implementation shown in Figure 2.8 is used. The heart of the circuit

2.2. Test properties of handshake circuits 33

areq

b req

b ack

aack

q

p

Figure 2.8: A possible gate-level mutex implementation.

is a pair of cross-coupled NAND gates. When both inputs rise simultaneously, the
output of the NAND gates remains above the threshold voltage of the output inverter
structure until the metastability is resolved.

Figure 2.9 shows a simulation in which the two inputs change simultaneously
from zero to one. This leads to an undefined state of the internal signals p and q. The
outputs aack and back however, remain zero until internally the metastability has been
resolved and it is known which of the two outputs must change to one.

The mutex has several testing problems. First of all, the pair of cross-coupled
NAND gates makes it a sequential element. More fundamentally however, the mutex

0.0
10.0n

20.0n
30.0n

40.0n
50.0n

-1.0

6.0

-1.0

6.0

-1.0

6.0

-1.0

6.0

-1.0

6.0

-1.0

6.0

T

Aack

Areq

Back

Breq

P

Q

Figure 2.9: Simulation in which metastability occurs on the two internal nodes P
and Q between 4 and 6ns. The outputs remain unchanged until the metastability is
resolved.

34 Chapter 2. Testing of handshake circuits

leads to non-deterministic behavior during test. Whenever the pattern {areq,breq} =
{1,1} is applied to the inputs of the mutex, the output cannot be predicted. It can go
to either the {0,1} state or the {1,0} state. This makes it impossible for a test-pattern
generation tool to calculate the expected response and it is therefore impossible to
verify to correctness of the responses of the circuit. If a test is developed manually,
the {1,1} combination can be avoided to prevent this problem. It is possible that
this leads to a reduction of the maximum fault coverage. With automatic test-pattern
generation this is more difficult and all input combinations most likely will occur in
the test, for example to test the environment of the mutex.

A final problem is associated with one of the possible implementations for the
output inverters of the element. To function correctly, the threshold voltage of these
inverters has to be above the metastable voltage at the internal nodes. Unless spe-
cially designed skewed inverters can be used that have a higher threshold voltage, the
implementation uses NOR gates with the inputs connected together. This will behave
similar to the skewed inverters. The structure is, however, fundamentally not fully
stuck-at testable, since it is inherently redundant. A similar structure is found in the
delay elements that are used in the latch controllers. Those delay chains are made out
of alternating NOR and NAND gates, because this way the delay reacts the same as
the logic on temperature and supply voltage variations. The only way to improve the
stuck-at testability of this type of elements is to implement them as primitive library
cells. How faults are counted for these redundant structures depends on the used test
standard. In some cases these faults are allowed and do not influence the final fault
coverage.

2.3 Handshake circuit test methods

Many methods have already been proposed to simplify and enhance the testing of
handshake circuits [68, 49, 52]. All methods that have been considered in the Tan-
gram project to test handshake circuits are based on functional test principles. As
such, the methods are primarily focused on finding test solutions with a minimal area
overhead, at the expense of the other cost factors described in Section 1.2.4. As a
result this has led to methods that proved cumbersome in practical use and limited in
their obtainable fault coverage.

2.3.1 Functional testing

Most of the designs made with Tangram are tested functionally. Creating these func-
tional tests is a very labor-intensive task and the tests typically offer only a limited
fault coverage. To assist in the development of functional tests, a test-evaluation
tool was developed, described in [68]. This tool evaluates the structural test cov-
erage (controllability and observability) of functional traces. The tool works with

2.3. Handshake circuit test methods 35

handshake level simulations, making the simulation very fast. It also provides direct
feedback to the Tangram source code, highlighting code that has been insufficiently
tested.

Another thing that eased the problem of testability of many Tangram based ICs
is the fact that many of these ICs are build around the 80c51 micro-controller [24].
These ICs could all be tested with the same functional test that had been developed
with the help of the test-evaluation tool. Still, it required a lot of work to generate
these patterns and the final stuck-at fault coverage was estimated to be only 90% [63].
For many new products, the functional tests will be more complex and therefore it is
not feasible anymore to develop functional tests for these products.

2.3.2 Programming scan in the Tangram program

Some circuits contain structures that are very difficult or time-consuming to test with
functional tests. Especially, large counters require excessive test times since often
exhaustive testing is required. For example a 16 bit counter that is exhaustively tested
requires 216 = 65536 patterns. A method that can provide direct access from the
primary inputs to such structures can significantly reduce the test time.

This type of modification to the Tangram source code makes it easier to design a
functional test for those parts of the circuit that are otherwise very difficu In [49], an
address generator is made testable by directly programming a scan access mechanism
in the Tangram source code. The example used in the paper is shown in Figure 2.10.
It is a test developed for a DCC error decoder [9] that contains an embedded address
generator. The address generator is made accessible by adding the code shown in
Figure 2.10 to the Tangram program. It defines a new function scanin() that
is called whenever a new address has to be loaded into the address register. The
function uses a “for” loop to shift 14 bits from the input scanbit into the address
register Address.

lt to test effectively. However, the test remains a functional test with the as-
sociated labor-intensive development and low fault coverage. Both adding the test
modifications and the test generation have to be carried out by hand. So while mak-
ing it easier to generate a more effective test, it retains the disadvantages of functional
testing.

2.3.3 The hold method

A significant step towards a structural test method was introduced with the hold
method, described in [50, 52]. The method exploits the fact that the activity in a
handshake circuit always starts at the startup channel and ends at a passive compo-
nent, such as a variable or a passivator, as explained in Section 1.1.2.

One of the problems associated with handshake circuits, is the autonomous op-
eration of the circuits, which limits its controllability and observability. The hold

36 Chapter 2. Testing of handshake circuits

scanin : proc(scanchan?(0..1))

begin scanbit : var(0..1)
| for 14 do

scanchan?scanbit;
Address := <scanbit,Address.0,...,Address.12>

od
end

Adress := ...

;

#14

<> -->-->
Add
ress

Input new scanbit

Scan
bit

Shift address 1 bit

scanbit Address

Figure 2.10: Scan function programmed in Tangram. The function scanin is called
whenever a new address has to be loaded into the address register.

method is based on inserting hold components in the channel before every passive
component. A hold component can stop the handshake in a channel in both the rising
and the falling phase. By stopping the handshake in a channel, all connected chan-
nels are also stopped, ultimately resulting in a totally quiescent circuit. This quiescent
state can be used for testing, both with Iddq and voltage-based tests.

Figure 2.11 shows a hold component inserted in a handshake circuit. The hold
component is controlled by three global control signals h1−h3. With these signals it
is possible to stop (hold) the handshakes over the channel in both phases. In addition,
the component can be used to directly clock the variable x via the h1 signal. The
approach uses three methods to detect faults in the circuit:

• Deadlock detection: detects faults that cause a handshake to deadlock. The
faults are detected if an expected response does not occur before a timeout.

• Data testing: detects faults that generate incorrect clock signals for the data
path resulting in faulty data in the data path. This method uses scan testing of
the data path.

2.3. Handshake circuit test methods 37

Control Signals

XHold

h1 h2 h3

VariableTransferrer

Figure 2.11: Hold component inserted in handshake circuit between a transferrer and
a variable.

• Iddq testing: this is the main test to detect faults in the control logic.

Because deadlock detection and data testing cannot detect all faults in the control
logic, the Iddq measurements are essential to obtain a high fault coverage. The Iddq
measurements are carried out in both the rising and falling phase every time a hold
component is activated. This results in a high number of Iddq tests that have to
be carried out, thereby greatly increasing the test time. One advantage of the Iddq
tests is that they are very effective at capturing bridging faults between request and
acknowledge lines.

The gate-level implementation of the hold component is shown in Figure 2.12. In
normal asynchronous operation, the element is transparent by setting the signals h1

Local clock signal

h1

h2h3

Hold component

Acknowledge _

Variable component
(control part)

Request

C

Figure 2.12: Implementation of the Hold element connected to the control part of a
variable component to show how the local clock signal can be controlled by signal
h1.

38 Chapter 2. Testing of handshake circuits

and h3 high and h2 low. In test mode, initially all the three control signals (h1− h3)
are low. If the component is activated through the request line the activity stops at
the first AND gate. The circuit will now enter a quiescent state in which an Iddq test
can be carried out. By toggling control line h1, the local clock for the data path can
be operated. This is used to facilitate a scan test for the data path. After the data path
test, the other control lines (h2 and h3) are raised which changes the acknowledge
signal to logic one. During the “down” phase, all three control signals are lowered,
starting with h1. In this state again an Iddq test is executed. Finally h2 and h3 are
lowered to complete the handshake.

The data path is tested with a scan method as described in [51]. The method
exploits the fact that the hold method allows the individual variables to be clocked
separately. Only during the scan-in and scan-out phases a global clock is applied. In
the evaluation phase only an individual variable is clocked using the hold elements.
This allows pipelining of patterns in the scan chain, which reduces the test time.
Additionally this removes the need for slave latches resulting in a latch based scan
method based on L1L2* scan [16].

The hold method can result in a high test quality, but depends on a large number
of time-consuming Iddq tests to obtain this. Additionally the test patterns for the
control block are functional patterns that need to be provided by the designer. This
therefore does little to reduce the manual test-development work. Only the data path
test, which is scan based, can be largely automated. To conclude, the hold method
uses little area for DfT and can achieve better fault coverage than functional testing.
However, this is achieved with only a limited reduction in the test-pattern generation
effort.

2.4 Scan test in asynchronous circuits

The scan test method is the default method to test synchronous circuits. One reason
for this is the relatively inexpensive implementation. More importantly, scan test
simplifies the complex sequential ATPG problem into the well-known combinational
ATPG problem. For this problem many algorithms have been proposed [22, 26, 54],
which have led to powerful ATPG tools.

The successful application in synchronous circuit has motivated a number of ap-
plications of scan test in asynchronous circuit. Applying scan in asynchronous cir-
cuits is more problematic for two main reasons. First, asynchronous circuits tend to
use more state-holding elements than synchronous circuits. Second simply adding a
scan multiplexer to every register is not sufficient. In addition a control mechanism
is required as an alternative for the clock that is used to control the scan elements in a
synchronous circuit. There are two options for the control mechanism: asynchronous
control and synchronous control. In the next sections the two control mechanisms
are discussed and applied in several applications. Because of the larger area require-

2.5. Summary 39

ments of an asynchronous scan method, scan has mostly been limited to those parts
of the asynchronous circuit that have the most similarity with synchronous circuits.
This means that the proposed methods focus on the data path or on the exploitation
of a specific feature of a specific design style.

Asynchronous control

In an asynchronously controlled scan chain every data transfer from scan-register to
scan-register requires a handshake in the control logic. The control logic is equal to
the control logic of a FIFO buffer. This makes the implementation best suited for a
circuit that already contains many FIFO buffers or pipeline stages. If this is not the
case large and often complex control circuitry is required. The control circuitry itself
is only partially tested during the scan test and additional functional tests are required
to obtain full fault coverage.

This type of scan test control has been applied several times to the micro-pipeline
[64] design style. Since the control logic used in this style is already very similar to
the logic required for FIFO operation, the required modifications are limited. Several
methods have been proposed to apply scan testing with asynchronous control to the
micro-pipeline style of circuits [34, 47, 46, 55]. All methods are designed to support
the test of the logic located between the pipeline registers. The registers themselves
and the remaining control logic has to be tested implicitly.

Synchronous control

With a synchronous control mechanism, the scan chain is controlled by a clock signal.
Since a clock is not present in an asynchronous circuit, a clock signal has to be added
to the circuit and the sequential elements have to be modified to make them react on
the clock. The main advantage is that the circuit during test behaves the same as a
synchronous circuit. This can be exploited by using a large part of the existing test
tools and test infrastructure that is in place for synchronous circuits.

The synchronous full-scan concept was applied to an asynchronous circuit design
style that uses SR-latches as its sequential elements [59, 67]. The SR-latches were
modified to operate as LSSD style registers. The method uses four global control
signals, one of which can be used to force the {1,1} state on the S and R inputs of
the elements. The other three signals are uses to clock the LSSD registers. The work
focuses on proving that a scan method can reliably detect faults in the circuit, even
when the faults cause hazards making them very difficult to detect otherwise.

2.5 Summary

Handshake circuits have many characteristics that make them difficult to test. They
contain virtually all constructions that are prohibited in synchronous circuits because

40 Chapter 2. Testing of handshake circuits

they are difficult to test. For this reason alone, testing of a handshake circuit will
probably never become as efficient as testing of a synchronous circuit.

None of the test methods for handshake circuits described so far have supported
automatic test generation, neither by existing tools nor by making test generation
simpler to make the development of a new tool feasible. The maximum that is avail-
able is automatic test generation for those parts of the circuit that have been made
scannable.

The challenge addressed in this thesis is to develop a test method that covers
the entire circuit and offers automatic test pattern generation. The quality should
be equal to the quality offered by synchronous test methods. A lot of research has
been put into ATPG tools, leading to complex but powerful tools. Because of their
complexity it is impractical to develop new ATPG tools, except for extremely simple
ones. Therefore one of the goals is to reuse or adapt existing ATPG and other tools
were possible instead of developing new ones.

Current commercial ATPG tools are heavily oriented towards full-scan test. There-
fore a scan-based method will have the best support for test generation. To keep the
cost down and support simple integration with other modules on the chip, a syn-
chronous clocked scan chain seems to be the best option. Even though the area over-
head can be expected to be high, the other factors like simple ATPG, system integra-
tion and test development make scan-testing a promising test solution for handshake
circuits. In the following chapters a complete scan test method for handshake circuits
is introduced and its costs and benefits are evaluated.

Chapter 3

Scan testing of handshake control circuits

Chapter 2 ended with the conclusion that a synchronously controlled scan test method
offers the best solution to meet the objectives described in Chapter 1. This chapter
investigates the implementation options and applies these to the control block of a
handshake circuit. Later, in Chapter 4 the entire handshake circuit is made scannable.

3.1 Synchronous scan

In a scan method all the sequential elements in the circuit are modified into scan
elements that can capture data on a second input. This is schematically shown in Fig-
ure 3.1. Internally every scan element contains two sequential elements: the master
and the slave.

The master element can capture a data value on either one of its two input ports,
the normal data input d or the scan data input TDI . The slave element keeps the
output of the scan element stable while the master element captures new data. The
operation of the scan element is controlled by a set of control signals. These control
signals control both normal circuit operation as well as the operation during scan test.

In a synchronous scan method, the control signals are controlled by global signals
that are a combination of select signals and clock signals. These signals are controlled
by primary inputs, either directly or via some control logic. Different encodings of
the control signals are possible, leading to different scan approaches. Scan elements
that use different control signal encodings can be used together, however this can
lead to timing constraints that should be respected for safe operation. These timing
conditions are discussed in the last section of this chapter.

41

42 Chapter 3. Scan testing of handshake control circuits

Scan element

TDI

control
signals

zd

TDOSlave
Mas-

ter

Figure 3.1: General structure of a scan element, consisting of a master and a slave
element controlled by some control signals.

3.1.1 Scan approaches

There are two characteristics that can be used to distinguish alternative scan ap-
proaches. Every alternative requires its own style of scan elements.

The first characteristic is the choice of clocking strategy, there are two options:

Edge triggered clocking A single clock signal is distributed over the circuit. The
scan element will internally generate two separate clock signals for its master
and slave elements. The effect is that the output of the element changes on an
edge in the clock signal. Usually the element reacts to the rising edge of the
clock and a clock period is defined to last form one rising edge to the next.

Level sensitive clocking Two clock signals are distributed, one is exclusively used
to clock the master elements, the other exclusively to clock the slave elements.
The use of two independent clock signals, gives more control over the opening
and closing of the internal sequential elements. Besides the normal behavior
where one element is closed and one open, it also allows for both element to be
closed or opened simultaneously. The first can be used to make data transfer
safe, the second can be used to make the element transparent. To obtain the
same behavior as an positive edge-triggered clock, the master clock should be
inverted with respect to the edge-triggered clock. The slave clock has the same
polarity as the edge-triggered clock.

The second characteristic is the choice of multiplexer implementation used to
select between normal data input and scan data input. Again there are two options:

Data multiplexing The input is selected by a normal multiplexer, controlled by a
select signal. The select signal is a data input with is stable for a complete
clock cycle.

3.1. Synchronous scan 43

Clock multiplexing Both the test data input and the normal data input have a sepa-
rate clock to control them. By clocking on one of these clocks, data from the
corresponding input is captured.

(a) (b)

te te

clk

Normal-
mode

Scan-
mode

Scan-
mode

Normal-
mode

Scan-
mode

Scan-
mode

(c) (d)

te te

clk

Normal-
mode

Scan-
mode

Scan-
mode

Normal-
mode

Scan-
mode

Scan-
mode

Level-sensitive clocking Edge- triggered clocking

clk 1 Data
multiplexing

Clock
multiplexing

clk 2

clk 1

clk 2

Figure 3.2: Control signal timing for the four alternative control signal encodings:
level sensitive clocking (a, c), edge triggered clocking (b, d), combined with data
multiplexing (a, b) and clock multiplexing (c, d).

The two characteristics lead to four alternative scan approaches. The timing of the
control signals used for these options is shown in Figure 3.2. Two of the four options
are well known and often used. These are the combination of level sensitive clocking
with clock multiplexing, resulting in the LSSD scan method. The other frequently
used scan method is the edge-triggered Mux-D variant, using edge-triggered clocks
and data multiplexing. Both of these will be used in this thesis. The variant of level
sensitive clocking with data multiplexing will also be used. Only the combination
of edge triggered clocking with clock multiplexing is not used in this thesis. As
will be explained in the next section, all new scan elements will use level-sensitive
clocking and existing edge-triggered element all use data multiplexing. Details of an
edge-triggered clock-multiplexing strategy can be found in [23].

44 Chapter 3. Scan testing of handshake control circuits

3.1.2 Synchronous scan for handshake control circuits

Two fundamental test problems of handshake circuits are the autonomous and se-
quential behavior as described in Section 2.2.2 and Section 2.2.3. These two related
problems make it especially difficult to test the handshake control block of a hand-
shake circuit. Both the autonomous and sequential behavior can be removed during
test by implementing full scan in the control block.

Handshake control circuits can be viewed as combinational logic circuits with
feedback loops. These feedback loops introduce sequential behavior in the circuit.
To apply scan to these circuits, all sequential behavior has to be removed by breaking
the feedback loops with scan elements. Two types of loops can be identified. The
first type is internal to a C-element and provides the C-element with its internal state.
The second type of loop can span multiple gates. This makes the set of wires that
have to be broken by scan not unique. A loop can span multiple wires and only one
of them has to be broken. In those situations, the location to break the loop can be
chosen freely.

Combinational logic

C C C

Potential remaining loops

Figure 3.3: Handshake control with the C-elements and possible remaining loops
shown separated from the combinational logic.

Because every C-element has an internal feedback loop, a minimum requirement
is that C-elements are modified such that these internal loops are broken. A conse-
quence of this is that all loops that contain a C-element are also broken. The remain-
ing circuit now may or may not have any additional loops that still need to be broken.
This situation is shown in Figure 3.3. It shows the combinational logic block with
the C-elements pulled out at the bottom and possible remaining loops pulled out at
the top. The initial test approach is to only break all the loops inside the C-elements.
Any remaining loop will be broken with an additional scan elements, as will be de-
scribed in Chapter 4. These remaining loops also include the loops internal to mutex
elements, that can be either disabled, thereby reducing the fault coverage or scanned,

3.2. Logic gates 45

similar to the approach used for C-elements.
The loops inside the C-elements could be removed by inserting transparent scan

flip-flop in the loop. In this chapter, a more efficient solution is introduced in the
form of clockable and scannable C-elements. The scan function that is added to the
C-elements needs to support a transparent mode, in which the C-elements behaves
as an original unmodified element. This can be implemented with an edge-triggered
element but that would require an additional multiplexer to put it in a transparent
mode. This multiplexer itself is not test during the scan test. Therefore all scan C-
elements shown in this chapter use level-sensitive clocking. This clocking strategies
requires two separate clocks. In order to be able to use these clocks without requiring
additional external pins, an on-chip clock generator is shown in Section 3.4.4 that is
able to generate all the internal clocks from a single external reference clock.

3.2 Logic gates

In this section an overview is given of the logic gates that are used in handshake
circuits. Gates can be either primitive gates or composite gates. Primitive gates are
those gates that are directly available in a chosen technology library and are imple-
mented at transistor level. Composite gates are not available in the chosen library
have to be constructed out of the primitive gates that are available.

The gates are specified in two ways. First by so called “production rules” [42].
Second, by Boolean logic equations that are derived from the production rules. These
Boolean logic equations describe a gate in terms of simple logic functions, which can
be used to implemented the gate as a composite gate. For a number of common gates,
primitive implementations at the transistor-level are also given.

3.2.1 Production rules

A logic gate can be specified elegantly by a pair of production rules. Production rules
consist of a set of guarded commands of the form:

U → z ↑
D → z ↓

(3.1)

This specifies a gate with output z. The inputs of the gate are used to form two
Boolean expressions U and D, that function as the up and down guards of this output.
If the up-guard U is true, then the output will become true and if the down-guard D
is true, then the output will become false. The two guards may not be true at the same
time.

The production rule specification can be directly used to derive a Boolean equa-
tion by substituting the up and down guard in Equation 3.2

46 Chapter 3. Scan testing of handshake control circuits

z := U + z · D (3.2)

Production rules can be used to describe both combinational and sequential gates.
If an input combination is possible where neither of the guards is true, the specifica-
tion is sequential, otherwise it is combinational.

3.2.2 Combinational gates

For a gate to be combinational, for all input combinations one of the guards has to be
true. This leads to the requirement that U = D, or whenever one guard is true the
other is false and vice-versa. The Boolean specification is now given by:

z := U + z · D = U (3.3)

For example an AND gate is specified by:

a · b → z ↑
a + b → z ↓

(3.4)

This corresponding equation, as expected, is the AND function:

z := a · b + z · (a + b) = a · b (3.5)

Most technology libraries contain a large number of primitive combinational
gates. Often all of the gates with up to four inputs are present, along with many
of gates that have more than four inputs. Efficient logic optimizers are commercially
available and can be used to map larger combinational functions on to the primitive
gates in the most cost-effective way.

3.2.3 Sequential gates

All other gates that can be specified with production rules are sequential, meaning
that for at least some input combinations the output value is not determined by the
inputs. Solving Equation 3.2 for a sequential specification results in a logic function
F, which is a function of both its inputs and its current output value. Every sequential
gate can be realized by a combinational function F with its output fed back to one
of the inputs [12], as illustrated in Figure 3.4. For correct operation, it is required
that the delay of the feedback loop is smaller than the delay of any other loop from
the output of the gate back to an input. This type of requirement is an asymmetric
isochronic fork requirement, labelled with a < symbol in Figure 3.4.

A well known example in this category is the D-latch specified by:

3.2. Logic gates 47

Finput(s)
z

Figure 3.4: Generic implementation of a sequential gate.

d · en → z ↑
d · en → z ↓

z := d · en + z · (d · en) = d · en + z · d + z · en
(3.6)

The Karnaugh diagram for this latch is shown in Figure 3.5(a), and its composite
implementation is shown in Figure 3.5(b). This latch is known as the hazard-free
polarity-hold latch [19].

d

en
z

d

en
z

d

z

en

0

0 1

0 1

1 0

1

z

(a)

(b) (c)

Figure 3.5: Gate-level implementation of a latch, (a) Karnaugh diagram, (b) Hazard-
free implementation, (c) Optimized implementation with inverted enable input.

The term z · d is logically redundant in this implementation, but can be used to
guarantee hazard-free operation. The potential hazard can occur if both d and z are
one and the enable signal en changes. This can potentially lead to the destruction
of the internal state of the latch if en changes from one to zero. If this falling tran-

48 Chapter 3. Scan testing of handshake control circuits

sition disables the top AND gate before the bottom AND gate is enabled, a zero
can appear on the output of the latch which can feedback into the bottom AND gate.
The hazard can be avoided if an implementation is used that first enables the bot-
tom AND gate before disabling the top AND gate. In case of the latch is can be
done by using the inverse of the enable signal to control the latch. This means that
the potential hazard cannot occur and that the specification can be further optimized
into Equation 3.7. The implementation of this latch is shown in Figure 3.5(c). An
alternative implementations is to use a separate gate for the top AND and integrate
the bottom AND with the NOR gate, since this also ensures that the bottom gate is
faster.

z := d · en + z · en (3.7)

Both latch implementations shown are composite-gate implementations. Latches
are very common in cell libraries, and will almost always be present in the form of
primitive gates.

d zd q d d q zd q

en 1

d d q zd q d zd q

en 2en en en

(a) (b) (c) (d)

Figure 3.6: D-type sequential gates, (a) Latch, (b) Level-sensitive flip-flop, (c) Edge
triggered flip-flop and (d) its symbol.

Two other important sequential gates are directly derived from the latch. These
are the level-sensitive flip-flop and the edge-triggered flip-flop. The symbols of all
these gates are shown in Figure 3.6. A single latch is shown Figure 3.6(a) and a
level-sensitive flip-flop using two basic latches and driven by two independent enable
signals is shown in Figure 3.6(b). As will be explained later in Section 3.4.1 this
allows a very robust timing. An edge-triggered flip-flop, shown in Figure 3.6(c) and
Figure 3.6(d), uses an internal inverter to generate the second enable signal from the
external enable signal. This has the benefit of using only one global signal. This
clocking method is the subject of Section 3.4.2.

3.2.4 C-elements

A C-element is a generic form of a set-reset latch, its most distinctive feature being
the lack of an enable signal. The basic form has two inputs a and b that both need to
have the same value in order for the output z to change to that same value, as specified

3.2. Logic gates 49

in Equation 3.8. Since the function is symmetric in both inputs, this version is called
a symmetric C-element. Figure 3.7 shows its symbol (a) and a possible composite
gate implementation (b).

a · b → z ↑
a · b → z ↓

z := a · b + z · (a + b)

(3.8)

b

a

b

a zz
C

(a) (b)

Figure 3.7: Example of a symmetric C-element, (a) symbol and (b) implementation.

From the basic symmetric C-element, a family of gates can be derived. Variations
exist with more than two inputs, inverted outputs and asymmetric guard functions. An
example of this last variation is given below, in Equation 3.9. In this case the up-guard
is b, therefore whenever b is high, the output also becomes high. The down-guard in
this example remains the same as the reset guard in the symmetric C-element. For
the output to go back to zero, both inputs have to be zero. This type of C-element is
called an asymmetric C-element.

b → z ↑
a · b → z ↓

z := b + z · (a + b) = b + z · a
(3.9)

Figure 3.8 shows the symbol (a) and a possible implementation (b) of this ele-
ment. In the symbol, input a is labelled with a minus sign, this means that this input
is only part of the down-guard and not of the up-guard.

Besides the composite implementations shown so far, many other implementa-
tions exist. Figure 3.9 shows possible primitive transistor-level implementations of
the two example C-elements. Figure 3.9(a) shows the symmetric C-element. This el-
ement functions as an AND if z is zero and as a NOR if z is one, both functions can

50 Chapter 3. Scan testing of handshake control circuits

b

a
b

a z

z
C

(a) (b)

Figure 3.8: Example of an asymmetrical C-element, (a) symbol and (b) implementa-
tion.

be recognized in the implementation. Figure 3.9(b) shows the asymmetric C-element.
The three transistors on the left implement the up and down guard of the C-element,
whereas the transistors on the right keep the internal state valid when neither of the
guards is true.

(a) (b)

a

b
z

z

z

b

a

a

b

b

a

b

b

a
z

a

Figure 3.9: Symmetric (a) and asymmetric (b) primitive C-element implementations.

3.2.5 Enabled logic gates

Any logic gate, either combinational or sequential, can be equipped with an enable
input. Such an input can be used to enable or disable the gate. When a gate is
disabled, it will not respond to changes on its data inputs. The enable signal is added
to a gate by taking the original production rules of a gate and add the enable signal
en in both the up and down guard as shown in Equation 3.10. The resulting gate is
always sequential.

U · en → z ↑
D · en → z ↓

(3.10)

3.2. Logic gates 51

The enable function is symbolized by a line drawn across the original symbol
with a name beside it indicating the enable signal. Figure 3.10 shows the symbol
used for a function F and for the enabled version of F.

F F

en

(a) (b)

Figure 3.10: Symbols representing the function F (a) and the enabled variant of F (b).

(a) (b) (c)

F

F

D

d

en en en

U

d

z z d z

Figure 3.11: Three implementations to add an enable signal to a logic gates, (a) a
multiplexer, (b) tristate transistors, (c) a transmission gate.

The enable function can be implemented in various ways. Figure 3.11 shows
three (out of many) alternatives. In Figure 3.11(a), the enabling is implemented with
a multiplexer. This results in a fully static circuit, equal to the circuit that would
be obtained by deriving an equation from the production rules. Function F can be
any function derived from production rules. The implementation in Figure 3.11(b)
uses tristate transistors to implement the enable function and the implementation in
Figure 3.11(c) uses a transmission gate. Both of these implementations are dynamic,
since a floating node is used to store the state. This has the advantage of being more
area efficient, but the resulting circuits are at the same time less resistant to noise and
cannot hold their state for a long time because of leakage currents.

52 Chapter 3. Scan testing of handshake control circuits

3.3 Scannable logic gates

The scan method for handshake control circuits relies on the use of clockable and
scannable C-elements. For both the clocking and scanning functions, several imple-
mentation alternatives exist. The next section introduces multiplexing that together
with the enabling of gates from the ingredients that are used to create clocked scan
gates. This is followed by the implementation of scan C-elements in both composite
and primitive variations.

3.3.1 Multiplexing the scan input

In a scan element a scan input has to be multiplexed with the normal data input. The
active input is selected by a test enable signal. Instead of adding a separate multi-
plexer to the circuit for every sequential element, the multiplexer is usually integrated
into the sequential element. In this way, the impact on speed and area is minimized.
Scan versions of the latch and the flip-flop implemented in this way are well known
and available in almost all standard cell libraries. There are two possible implemen-
tations for the multiplexers, mentioned before in Section 3.1.1, in this thesis referred
to as data multiplexing and and clock multiplexing.

• Data multiplexing

(d · te + ti · te) · en → z ↑
(d · te + ti · te) · en → z ↓

(3.11)

• Clock multiplexing

d · en + ti · te → z ↑
d · en + ti · te → z ↓

(3.12)

Equation 3.11 and Equation 3.12 show the production rule specification of both
multiplexing alternatives applied to a latch. In both specifications a new scan input
ti is created, that is used to form the scan chain. The multiplexer is controlled by
the test enable signal te. With data multiplexing, a normal multiplexer is added in
front of the latch function [2], as shown in implementation in Figure 3.12(a). Clock
multiplexing is implemented with two tristate latches. It uses the latch enable signals
to select which latch is active. The implementation is shown in Figure 3.12(b).

The operation of the two types of multiplexing is illustrated in the timing dia-
grams included in Figure 3.12. In the data multiplexing variant, test enable signal te
switches at the beginning of a clock period and keeps its value during the entire clock
period. In the clock multiplexing variant the te signal is operated as a clock signal.
During scan-mode the circuit is clocked with the te signal and during normal-mode
the circuit is clocked with the normal enable signal en. The control signals required

3.3. Scannable logic gates 53

(a) (b)

En

Te

te

en

en
d

ti
ti

d

te

Te

En

z z

Normal-
mode

Scan-
mode

Scan-
mode

Normal-
mode

Scan-
mode

Scan-
mode

Figure 3.12: Multiplexing in a scan element and scan timing diagrams for (a) data
multiplexing and, (b) clock multiplexing.

for the clock multiplexing variant can be easily generated from the signal used for
data multiplexing with a single de-multiplexer, as will be shown in Chapter 4.

3.3.2 D-type scan elements

The scan version of the D-type scan element follows directly from the previous sec-
tion. For edge-triggered flip-flops the data multiplexing version is used. Main reason
is that this type of element is available in every technology library and usually in
multiple versions.

For the level-sensitive flip-flop both data multiplexing and clock multiplexing are
an option. Current implementation use data multiplexing, since these are built using
latches in the technology library that use data multiplexing. The level-sensitive flip-
flops themselves are not common in technology libraries and are constructed out of a
scan latch and a normal latch. Another promising optimization is a primitive version
of an level-sensitive flip-flop. As shown in Figure 3.6(b), the level-sensitive flip-flop
consists of two back-to-back latches.

Only the master latch is used during normal asynchronous mode. This latch
must be implemented in fully static logic. The slave latch is only used during scan.
This slave latch can be a dynamic latch, resulting in the implementation shown in
Figure 3.13.

54 Chapter 3. Scan testing of handshake control circuits

3.3.3 Composite scan C-elements

The design of a scan C-element uses the enabled C-element as a basis. Like for
latches, the scan multiplexing functionality can be added in two different ways: one
leading to a data multiplexing implementation and one leading to a clock multiplex-
ing implementation. Because scan C-element require a transparent mode, only level-
sensitive clocked versions are presented. The scan C-elements use a special master
latch element that is later combined with a slave latch to form a flip-flop.

Scan C-element master latch

The choice of the multiplexing method lead to the following two specifications for a
scannable C-element master latch:

• Data multiplexing

(b · te + ti · te) · en → z ↑
(a · b · te + ti · te) · en → z ↓

(3.13)

• Clock multiplexing

b · en + ti · te → z ↑
a · b · en + ti · te → z ↓

(3.14)

The specifications are comparable to that of a latch, only the d input is replaced
by the a and b inputs that implement the original function of the C-element. In the
equations the asymmetric C-element is used that was specified in Equation 3.9.

For both multiplexing versions, many implementations are possible. However
the clock multiplexing version leads to a more efficient implementations in terms of
silicon area. By using the standard method of deriving a Boolean equation from a

en 1

en 2

en 2
zd q

te
ti

Figure 3.13: Level-sensitive flip-flop implementation with tristate slave latch.

3.3. Scannable logic gates 55

set of production rules, the following equation is derived from the clock multiplexing
style specification in Equation 3.14:

z := b · en + ti · te + z · (a · b · en + ti · te)
= b · en + ti · te + z · (a + b + en) · (ti + te)

(3.15)

Scan input ti and scan enable te together form a D-latch structure, similar to
the latch shown in Section 3.2.3. The same optimization can be performed. During
scan operation, when this latch is used, enable signal en is always zero. The logic
containing this signal merely acts as an additional delay during scan mode. The
optimization removes the ti term from the (ti + te) factor. Like was the case for the
latch, the loop delay has to be kept minimal. In the final circuit this is implemented
by allowing the feedback loop to loop over only one gate. For the example, the
optimization results in the following equation:

z := b · en + ti · te + z · te · (a + b + en) (3.16)

The equation can be further optimized as shown in Equation 3.17.

z := b · en + ti · te + z · te · (a + b + en)


b · en + x · (b + en) ≡
b · en + x · (b · en + en)




= b · en + ti · te + z · te · (a + b · en + en)


b · en + x · (b · en) ≡
b · en




= b · en + ti · te + z · te · (a + en)

(3.17)

The next step is to map this equation onto library cells. During this step the
timing constraints that were added during the optimization have to be fulfilled. This
means that the connection of the feedback loop z and the term te should be connected
as close to the output of the gate as possible. This is implemented in the mapping in
Equation 3.18, in which the previous mentioned signals are directly connected to the
gate producing the output z. The remaining logic is grouped into a minimal number
of additional gates and connected to the output gate.

F := b · en + ti · te
G := a + en

z := F + z · te · G
(3.18)

Figure 3.14 shows the implementation of this specification. In the library used
for this implementation, the functions z and G could be implemented with one cell,

56 Chapter 3. Scan testing of handshake control circuits

leading to a total of two library cells. The logic corresponding to the original C-
element is shown with bold lines.

b

en

ti

te

a

z

F

G

Figure 3.14: Standard-cell scan C-element implementation.

This mapping can be further optimized by changing the position of the inverters.
Another consideration is the drive strength of the last gate. In the mapping shown,
this gate is a complex gate that is already loaded by the internal feedback loop. An
alternative would be to create a mapping that uses a separate output inverter. This
decouples the feedback loop from the output and increases the drive strength. This
mapping is shown in Equation 3.19 and the implementation is shown in Figure 3.15.

F := b · en + ti · te
G := a + en

y := F · (y + te + G)

z := y

(3.19)

b

en
ti

te

a

zy

F

G

Figure 3.15: Alternative standard-cell scan C-element implementation with dedicated
output inverter.

For some C-elements this optimization will introduce an inverter for the scan
input signal. This inverter can be removed by treating the element as an inverting
scan cell during test generation.

3.3. Scannable logic gates 57

Scan C-element flip-flop

In scan mode, the scan C-element is operated as an LSSD type master slave flip-flop.
This is implemented by adding a normal latch to the scan C-element. The C-element
functions as the master latch and the additional latch as the slave latch. As can be ex-
pected, the new scan C-elements are significantly larger and slower than the original
elements. The area of the asymmetric scan C-element shown in the example, includ-
ing the additional slave latch, is about 5 times larger than the original C-element. For
other C-elements, the area overhead is comparable or somewhat lower. The average
area increase of a mix of C-elements that is typical for a Tangram design is about
a factor 4.5. The scan C-element is also about 2 to 3 times slower, counted by the
number of inversions between input and output. In the original C-element there are
2 inversions. In the scan C-element there are 6, including the 2 for the slave latch.
These numbers can vary slightly depending on the type of C-element.

3.3.4 Primitive scan C-elements

The scannable C-elements represent by far the largest contribution to area increase
and performance degradation in the final scan testable netlist. This makes it desirable
to design new primitive cells for these scan C-elements. The design of these cells has
been introduced in [12].

LSSD latch version

The most efficient implementation is derived from the clock multiplexing structure
shown in Figure 3.12(b). The master latch is replaced by a C-element function. This

 Ca
b

ti

z

en

te

Figure 3.16: Custom scan C-element latch principle.

58 Chapter 3. Scan testing of handshake control circuits

leads to the overall structure shown in Figure 3.16. An enable signal is added to
the original C-element and this C-element forms an LSSD multiplexer with a tristate
inverter.

LSSD flip-flop version

The flip-flop version of a primitive scan C-element is created by replacing the inverter
in Figure 3.16 with a tristate inverter. The resulting structure is shown in Figure 3.17.

 Ca
b

ti

z

en 1

te

en 2

Figure 3.17: Custom scan C-element flip-flop principle.

A transistor-level implementation of this structure implementing the same type
of asymmetric C-element used in the previous section is shown in Figure 3.18. The
implementation of the symmetric version is shown Figure 3.19.

These primitive C-elements use about twice the area of the original non-scan C-
elements, which is less than half of the area used by the composite scan C-element
implementations. The speed of the elements is also improved. The number of inver-
sions is reduced back to two. However the height of the transistor stack increased
from two to three because of the tristate transistors. Therefore the gates are still
somewhat slower than the original non-scan C-elements. It is also important to note
that these C-elements use dynamic logic during the scan test, but that in the normal
asynchronous mode of operation the behavior is completely static. The state in that
case is not stored on an internal node but in the conventional way with a feedback
loop.

With this type of scan C-elements, a new cell has to be added to the library for
every type of C-element that is used in the design. An alternative solution is the
design of one generic transparent scan flip-flop that can be customized with additional
gates to form the entire family of scan C-elements. The benefit of using such a generic
element is a reduction of the development and characterization work for the new cells.

3.4. Clocking strategies 59

b
a

z

a

b

z

en 1

en 1

en 1

en 1

en 2

en 2

te

te

ti

ti

z

Scan in C-element Slave latch

Figure 3.18: Transistor-level asymmetric scan C-element implementation
.

The area requirement and power consumption of C-elements based on a generic cell
will be in between those of the composite and primitive gates shown before.

3.4 Clocking strategies

In order to clock the new scan elements, global clock signals have to be added to
the circuit. These clock signals are only used during scan test and are idle during
normal circuit operation. This changes the requirements of the clocks compared to
synchronous clocking. The most important observation is that the speed of the clock
is not important. The only requirements are the reliable operation during scan test,
by preventing skew problems [28] and the minimization of the area that is used for
buffers and wiring in the implementation.

Two types of clocking strategies are used: level-sensitive clocking for latches and
C-element and edge-triggered clocking for flip-flops. In handshake circuits, most
of the scan elements are either latches or C-elements but scan flip-flops can also
occur in the data path. Therefore both types of clocking strategies are important
and their properties are discussed in Section 3.4.1 and Section 3.4.2. Furthermore,
the interaction between the two clocking strategies and the on-chip generation of the
clock signals are the subjects of Section 3.4.3 and Section 3.4.4.

60 Chapter 3. Scan testing of handshake control circuits

a

b

b

a

a

b

b

a

en 1

en 1

en 1

en 1

en 2

en 2

te

te

ti

ti

z

z

z

Scan in C-element Slave latch

Figure 3.19: Transistor-level symmetric scan C-element implementation.

3.4.1 Level-sensitive clocking

The level-sensitive latches and C-elements in the scan circuit are clocked with a two-
phase level-sensitive clock. Master and slave latches are clocked with independent
clock signals. This allows external control over all clock phases, which makes it
possible to avoid any timing problems such as skew. The negative aspect of this is
that it requires more global wiring since two clock signals need to be distributed over
the chip.

Figure 3.20 shows master and slave latch together with a timing diagram of a two-
phase level-sensitive clock. The timing requirements of the latches can be expressed
in two time intervals:

• Stability interval (s): the time during which the data input of the latch has to
be stable.

• Validity interval (v): the time during which the output of the latch is valid.

To ensure save data transfer between two latches, the stability interval of the
receiving latch has to fit within the validity interval of the sending latch. The top
timing diagram of Figure 3.20 shows which circuit properties determine the stability
and validity intervals of a latch. The stability interval begins a setup time tsetup before
the falling edge of the clock. It lasts until a hold time thold after the falling edge that is
delayed with the clock skew tskew. The validity interval starts a data-to-output latch

3.4. Clocking strategies 61

thold

tdq

vmaster smaster

sslave

vslave

vmaster smaster

sslave

vslave

d d q d q z

(a) Inverted clocks

(b) Non-overlapping
 clocks

tcq
tsetup

tskew

vmaster after d logic

dlogic

 clk slave

d logic

tcycle /2tcycle /2

tnon-overlap

tcycle /2tcycle /2

tcq

tsetup

 clk master

 clk slave

 clk master

 clk master clk slave

Figure 3.20: Level-sensitive clocking, (a) inverted clocks, (b) non-overlapping clocks

delay ddq after the last moment that the data at the input of the latch could change,
which is a setup time tsetup before the falling clock edge. The validity interval lasts
until a clock-to-output latch delay dcq after the rising edge of the clock. In those cases
where logic is present between the latches, the validity period is delayed by the logic
delay dlogic.

For the stability interval to fit inside the validity interval two conditions have to
be valid, as shown in the next two expressions for the master to slave transfer. The
first states that the validity period has to begin before the stability period, the second
states that the stability period has to stop before the end of the validity period.

sslave{begin} > vmaster{begin} ⇒
1
2 tcycle − tsetup > −tsetup + tdq + dlogic ⇒

tcycle > 2 · (tdq + dlogic)

(3.20)

62 Chapter 3. Scan testing of handshake control circuits

sslave{end} < vmaster{end} ⇒
1
2 tcycle + tskew + thold < 1

2 tcycle + tcq + dlogic ⇒
tskew < tcq + dlogic − thold

(3.21)

Equal relations hold for the slave to master transfer. The first condition is known
as the max-delay problem, it defines the minimum required clock period. Alterna-
tively it specifies what the maximum logic delay dlogic is for a given clock period.
This condition can always be satisfied by choosing the clock frequency sufficiently
low. The second condition is known as the min-delay problem, which defines the
maximum clock skew the circuit can tolerate. The extend of the min-delay problem
depends on both gate and circuit properties and is most severe if the logic delay dlogic

is small. Additional margin can be added to remove this problem by making the two
clocks non-overlapping. The non-overlap time tnon−overlap is the time between the
falling edge of one clock and the rising edge of the other clock. The non-overlap
time increases the validity period of the latch and results in the modified min-delay
condition:

tskew < tcq + dlogic − thold + tnon−overlap (3.22)

By increasing the non-overlap time, all problems with clock skew can be avoided.
By in addition increasing the clock cycle period, all other problems can also be
avoided. With non-overlapping two-phase clocks it is therefore always possible to
safely clock the circuit.

During scan, all latches are placed serially in a chain. This reduces the logic delay
dlogic essentially to zero, leading to the worst-case situation with respect to the min-
delay problem. Secondly, since the clocks are only used during scan, the signals can
be minimally buffered to reduce the required area; this however increases the skew.
For these reasons a clocking scheme is used that uses a large non-overlap period to
decrease the sensitivity of the circuit to clock skew.

3.4.2 Edge-triggered clocking

Flip-flops can also be used in handshake circuits. They react on a rising (or falling)
edge of a single distributed clock signal. The flip-flops include circuitry to produce an
internal two-phase signal. This provides fewer possibilities to avoid timing problems
by changing the clock parameters and therefore requires more thorough analysis of
the circuit to prevent possible problems during the operation of the circuit.

The timing of flip-flops is shown in Figure 3.21. Again stability and validity
intervals can be defined. Main difference with the latch is the start of the validity
interval. Data on the input of a flip-flop has to wait for the clock. This means that
the output only becomes valid after the clock-to-output delay dcq corrected for clock

3.4. Clocking strategies 63

tcq

tsetup thold

sflip-flop

vflip-flop

tskew

vflip-flop after d lo gic

d logic

d
d q zd q

tcq

tskew

flip-flop clk

flip-flop clk

dlogic

tskew

tcycle

Figure 3.21: Edge triggered clocking.

skew tskew. If logic is present between the flip-flops, the interval is delayed by the
logic delay dlogic. For correct operation, the same two conditions have to hold for the
stability and validity intervals, only the implications are now different:

sflip−flop{begin} > vflip−flop{begin} ⇒
tcycle − tsetup > tskew + tcq + dlogic ⇒

tcycle > tskew + tcq + dlogic + tsetup

(3.23)

sflip−flop{end} < vflip−flop{end} ⇒
tcycle + tskew + thold < tcycle + tcq + dlogic ⇒

tskew < tcq + dlogic − thold

(3.24)

The cycle time of an edge-triggered circuit also has to incorporate the clock skew
tskew and setup time tsetup, resulting in somewhat larger clock periods. The min-
delay issue is a more serious problem with edge-triggered circuits. Unlike the case
of level-sensitive clocks, the problem cannot be removed simply by changing the
timing parameters of the clock. Therefore, circuit design methods have to be used
that ensure that the clock skew is kept to a minimum and that the logic delay dlogic

is large enough to avoid the problem, This can be accomplished by e.g. by adding
buffers to delay the data inputs to a flip-flop.

For this reason, whenever flip-flops are used, some form of clock-tree balancing is
required. Fortunately the number of flip-flops in a handshake circuit is usually very
limited; the majority of the scan elements are level-sensitive, making the problem
relatively easy to solve.

64 Chapter 3. Scan testing of handshake control circuits

3.4.3 Combining edge-triggered and level-sensitive clocking

In handshake circuits, latches and flip-flops can be used together in a circuit. This
means that it should be possible to safely transfer data between these two types of
elements. This can be both in normal mode as well as in the scan chain, although in
the later case can be avoided by making separate scan chains for each type of element.
Figure 3.22 shows a possible situation in which a master-slave latch is connected to a
flip-flop, which is again connected to a master-slave latch. There are two potentially
unsafe data transfers:

• From the slave latch to the flip-flop

• From the flip-flop to the master latch.

Both conditions can be expressed with stability and validity periods. For the
slave latch to flip-flop transfer, the stability period of the flip-flop has to end before
the validity period of the slave latch ends.

sflip−flop{end} < vslave{end} ⇒
tskew < tcq(slave) − thold(ff) + dlogic

(3.25)

For the flip-flop to master transfer, the stability period of the master latch has to
end before the validity period of the flip-flop ends.

smaster{end} < vflip−flop{end} ⇒
tskew < tcq(ff) − thold(master) + dlogic

(3.26)

The two conditions indicate possible timing problems if the clock skew tskew

between the clocks is large. Similar to two-phase level-sensitive clocking, the clock
skew problem can be removed by inserting non-overlap times between the flip-flop
clock and the two latch clocks. Two non-overlap times are defined and shown in
Figure 3.22: The master to flip-flop interval tmaster to ff and the flip-flop to slave
interval tff to slave. With these intervals, the timing relations become:

slave to flip-flop ⇒ tskew < tcq(slave) − thold(ff) + dlogic + tff to slave

flip-flop to master ⇒ tskew < tcq(ff) − thold(master) + dlogic + tmaster to ff

(3.27)
The timing diagrams a and b in Figure 3.22 show a two-phase non-overlapping

clock signal pair for the master and slave latches. These can be combined with a
flip-flop clock signal in several ways. The first approach is to generate a new flip-flop
clock signal with sufficient non-overlap intervals before and after the rising edge,
such that all timing problems are prevented. This is the signal shown in timing di-
agram c of Figure 3.22. The disadvantage is that it requires the addition of a new

3.4. Clocking strategies 65

(a)

(e)

(c)

(b)

(d)

smaster

vslave

vflip-flop

sflip-flop

vflip-flop

sflip-flop

vflip-flop

sflip-flop

d d q zd q

master
clk

d q

slave
clk

d q d q

flip-flop
clk

master clk

slave clk

flip-flop clk 1

flip-flop clk 2

flip-flop clk 3

tmaster to ff
tff to slave

master-slave
latch

master-slave
latch

flip-flop

Figure 3.22: Timing conditions for data transfers between level sensitive latches and
edge triggered flip-flops.

independent clock signal. To reduce cost, the flip-flop clock can also be connected to
either the inverted master clock (Figure 3.22(d)) or the slave clock (Figure 3.22(e)).
The first option removes the control over tmaster to ff , the second over tff to slave.
As shown in the timing diagrams, this brings the stability and validity periods close
together and increases the vulnerability to skew. Whenever this leads to a timing
violation, an anti-skew latch must be inserted to remove the problem.

The problem will be most profound in the scan chain, since in this case dlogic

is considered to be zero. Therefore, the skew problem is minimized by reducing
the number of transfers between latches and flip-flops. This is accomplished by first
creating two separate groups, one with latches and one with flip-flops. If these two

66 Chapter 3. Scan testing of handshake control circuits

groups are connected, at most one anti-skew latch is required at the interface. During
normal mode operation, dlogic will in general be non-zero (or a delay can be added),
and hence anti-skew latches are not required for the non-scan inputs.

3.4.4 On-chip clock generation

In order to operate the scan chain, two (or three) clocks are required. Although it is
more flexible if these clocks are connected to external pins on the chip, this is not
always possible because of cost reasons.

In this section therefore an on-chip clock generator is shown that can produce all
required internal clocks from a single external reference clock. Figure 3.23(a) shows
how to generate a two-phase non-overlapping clock with a pair of cross-coupled NOR
gates [57]. The non-overlap time can be tuned, independently for rising and falling
edges, by modifying the delays d1 and d2 in the feedback loops.

By adding a third delay d3, it is possible to also generate an independent flip-flop
clock with this circuit. This can be done in two ways, either by deriving the flip-flop
clock from the inverted master clock (as shown in Figure 3.23(b)) or by deriving it
from the slave clock (as shown in Figure 3.23(c)). In both cases, the rising edge of
the clock falls after the falling edge of the master clock and before the rising edge
of the slave clock, thereby satisfying the constraints in the previous section. The
main difference between the last two methods is the timing of the falling edge of the
flip-flop clock. This timing is not critical for normal circuit operation, but as will
be shown in the next chapter, it does have an influence on the timing of the latch
controllers.

For the use in handshake circuits, the clock generator also needs to be able to set
the scan elements in transparent mode to support the asynchronous mode of opera-
tion. This requires both the master latches and the slave latches to be open. With
the the implementations shown Figure 3.23 this is not possible. In Section 4.4.1 a
clock generator is shown that is able to put the circuit in transparent mode, by using
a separate test-mode signal.

3.5 Summary

In this chapter, the basic ingredients of a scan solution were presented that can be used
to make handshake control circuits scan testable. In this way two of the testability
problems identified in Chapter 2 could be solved: the autonomous and the sequen-
tial nature of the control circuits. The solutions for the remaining problems will be
presented in Chapter 4.

The basic ingredients of the scan method are the scan C-elements. Several imple-
mentations have been presented. First, composite scan C-elements were introduced
that are large and slow but can be implemented in any technology library. These

3.5. Summary 67

External
reference
clock

d1

d2

d1

d2

d3

External
reference
clock

d3

d2

d1

External
reference
clock

ref. clk

d3

d2d1

d1
d2

d3

ref. clk

d3

d1 d1 d2

ref. clk

(a)

(b)

(c)

clk flip-flop

clk master

clk slave

clk slave

clk master

clk slave

clk master

clk master

clk flip-flop

clk slave

clk master

clk master

clk flip-flop

clk flip-flop clk slave

clk slave

Figure 3.23: On chip clock generation, (a) two-phase non-overlapping clock, (b) with
additional flip-flop clock derived from the master clock, (c) with additional flip-flop
clock derived from the slave clock.

68 Chapter 3. Scan testing of handshake control circuits

were followed by primitive scan C-elements that are smaller and faster but require an
extension to the standard-cell library.

The scan C-elements are clocked with two-phase non-overlapping clocks. This
makes it possible to reliably operate the scan chain, while being able to tolerate clock
skew. Combined with the low target speed, this means that area can be saved by
reducing the clock buffering circuitry that is normally required to generate a well
defined clock signal. Another advantage is that it simplifies the design flow, by re-
moving many of the steps that are normally used to insert and balance the clock.

In the data path flip-flops can still occur. The flip-flop clock still has to be op-
timized for minimal skew. Timing problems between the latches and flip-flop parts
can be avoided by inserting non-overlap times between the clocks. However if the
clock skew is not a problem, the flip-flop clock can be shared with one of the latch
clocks to reduce the wiring area. Further reduction can be achieved by generating all
of these clocks on-chip from a single external reference source. The main benefit of
this scheme is that it only requires one external clock pin.

Chapter 4

Full scan test for handshake circuits

In this chapter, full-scan testing is applied to the complete handshake circuit. The test
method is based on the use of scan C-elements in the control block combined with
conventional scan latches and scan flip-flops in the data path. A new latch controller
is introduced to allow the local clocks of the latches and flip-flops to be controlled by
a global clock during the scan test [6].

Test vector generation for the modified circuit can be carried out with existing test
tools. These tools were not specifically designed to be used with handshake circuits,
but by using techniques described in this chapter they can be applied nevertheless.

In the last part of this chapter, a number of additional circuit modifications is
given to remove a number of problems associated with certain circuit structures.
Among these are the testability problems that were introduced in Chapter 2 and that
are not solved by the scan modifications introduced sofar. A second class of modifi-
cations is targeted at improving the results of the method.

4.1 Design for testability

A scan testable circuit is created by replacing all sequential elements with the scanna-
ble versions of these elements. In the control block this means replacing the C-
elements with scan C-elements. New global signals are added to the control block
and are connected to the enable and scan-mode inputs of the scan C-elements. These
signals are used to control the circuit during the scan test.

In the data path, each latch is replaced by a master scan latch and a slave latch.
The flip-flops are replaced by scan flip-flops. Like in the control block, global control
signals are connected to the scan-enable inputs of the master latches and to the enable

69

70 Chapter 4. Full scan test for handshake circuits

inputs of the slave latches. The enable inputs of the master latches and of the scan
flip-flops cannot be directly connected to a global control signal. These inputs are
already connected to the local clock signals generated by the latch controllers. The
latch controllers therefore need to be modified to allow the multiplexing of a global
clock signal onto the internal local clock signals that are connected to the enable
inputs of the latches and flip-flops.

4.1.1 Latch controller modification

For the implementation of the scan method, a new latch controller is required that can
be used to control the local clock signals with a global clock signal.

Latch controllers translate the handshake signals that are used in the control block
into suitable local clock signals for the data path. Every register in the data path, that
can consist of either latches or flip-flops, has its own latch controller. The control
block will activate a latch controller whenever the register it controls needs to capture
a new data value. For historical reasons, a latch controller that clocks a flip-flop
register will still be referred to as a latch controller.

request

LCS

(a) (b) (c)

Local clock
signal

01

01

01

glocal
clock
signal

Local clock
signal

Local clock
signal

delay

buffer

acknowledge request acknowledge request acknowledge

glocal
clock
signal

LCS

Figure 4.1: Latch controller implementations (a) Original version (b) Initial scan
version (c) Optimized scan version.

The latch controller that is used in the original non-scan circuit is shown in Fig-
ure 4.1(a). It consists of only two components, a delay element and a buffer. Each of
these helps to condition one of two properties of the enable signal generated by the
latch controller. The two properties of the clock signal are the timing and the drive
strength. The timing of the clock signals is set by the delay element. The clock signal
is delayed such that the data inputs of the register are guaranteed to be valid when

4.1. Design for testability 71

the register is clocked. The buffer is used to increase the drive strength of the clock
signal to match it to the load on the signal.

The clock signal is also used as the acknowledge signal of the latch controller to
the control block. It signals to the control block when the register has completed the
capture of new data. It is of course important that this does not happen before the
registers are actually closed. In the original latch controller this is done by directly
connecting the acknowledge signal to the clock signal. In this way when the clock
signal is delayed because it has to drive a large load, the acknowledge signal is also
delayed. An implementation that decouples the acknowledge signal from the clock
signal is less safe and should not be used.

These requirements equally hold for a latch controller that can be used for scan
test. The multiplexing function that is required to multiplex the global clock on to
the local clock is therefore not allowed to cause a decoupling of the acknowledge
signal from the local clock signal. One implementation that fulfills this requirement
is shown in Figure 4.1(b).

The circuit uses two multiplexers to completely separate the control block and
the data path during test. The latch-control select signal (LCS) is high during the
entire test. In the implementation, the acknowledge signal and the local clock sig-
nal are still coupled during normal-mode, when LCS is low. When the local clock
signal is delayed, the acknowledge is also delayed. The multiplexer in the acknowl-
edge signal will only further delay the signal. The obvious disadvantage of this latch
controller implementation is that it is not fully testable. Most importantly it does not
test the asynchronous-mode behavior of operating the latch via the request signal.
Additionally the connection from the local clock signal to the acknowledge signal is
not tested.

To test these two connections, the circuit has to be operated in normal-mode
(LCS = 0) during the evaluation-phase of the test. This would enable the test of the
connection from the request signal via the buffer to the acknowledge signal. On the
other hand this would prevent the register connected to the latch controller from being
clocked during the evaluation-mode. Even worse, the local clock signal is controlled
by the test pattern. For some patterns the clock will be driven high, thereby making
the data registers transparent and destroy the information inside the registers.

For this reason it is not possible to use the normal-mode for test evaluation when
at the same time the registers are used to store data. The solution to this problem is
to use two separate tests. The first test can use the normal-mode for test evaluations
but cannot test the registers. The second test uses the test-mode for test evaluation
and can make use of the registers. Together the two tests provide test coverage of the
entire circuit. To implement this scheme, the circuit is split into a control block and
a data path. The control block test uses the normal-mode during the evaluation phase
and the data path test uses the test-mode during the evaluation phase.

With this test approach, the multiplexer that drives the acknowledge signal in the
latch controller show in Figure 4.1(b) is no longer required. The acknowledge signal

72 Chapter 4. Full scan test for handshake circuits

is only observed during the evaluation phase, which for the test of the latch controller
is executed in normal-mode. The test-mode is only used to scan data in and out
of the scan chain, during which the acknowledge signal is not observed. The final
implementation of the latch controller is shown in Figure 4.1(c). The multiplexer
will increase the delay of the latch controller and therefore slow down the circuit.
This can be corrected by reducing the delay of the delay element in the modified
latch controller by the delay represented by the test modification.

4.1.2 Design for testability overview

A schematic representation of the final scan-testable circuit is shown in Figure 4.2.
The implementation is split in a control block and a data path. This is required be-
cause the two blocks will be tested separately, as addressed above.

...

...

te

TDI

TDO

Parameters Conditions
Local clock

signal

Control block

Data path

Combinational
Logic

TDI

Inputs

C C C

Combinational
Logicclk masterclk slavete

clk slave

Acknowledge

Requeststart

Outputs

TDO

...

...

...

Latch C
ontroller

clk master
clk flip-flop

0 1 LCS

d qd qd q

te
ti

te
ti

Figure 4.2: Gate-level partitioning of the scan-testable circuit. Both the control block
and the data path are scannable. The original latch controller is replaced by the
version in Figure 4.1(c).

In the control block all the C-elements are scannable. There are three global
control signals used to control the C-element: the master clock clkmaster, the slave
clock clkslave and the test enable te. The latch controllers use the implementation
shown in Figure 4.1(c). This requires more control signals: the latch-control select
signal LCS and the clock signal for the registers. The clock signal can be either the
master clock clkmaster or the flip-flop clock clkflip−flop or both, depending on the

4.1. Design for testability 73

type of registers (latch or flip-flop) that are used. For clarity only one latch controller
is shown, in a real circuit of course many are present, each driving its own register
via a dedicated local clock signal.

In the data-path, scan versions are used for the latches and the flip-flops, equal to
conventional synchronous scan implementations. The master clock for the registers is
already supplied by the latch controllers. Two additional control signals are required:
the test enable and the slave clock. The latter is of course only required if latches are
used in the data-path.

The structure shows separate scan chains for the control block and for the data
path. Alternatively these two scan chains can be combined into one scan chain or
further split up into more scan chains. In Figure 4.2 separate control signals are
shown for the control block and the data path. Some of these signals can be shared,
for example the test enable and the slave clock. This is shown in Section 4.4.

4.1.3 Latch timing constraints

The critical components with respect to scan test signal timing are the latch con-
trollers that generate the enable signals for the latches and flip-flops in the data path.
They form a connection between clock signals and data signals. Such a connection
violates the scan rules that are used to guarantee correct operation of the scan test.
For this reason the timing of the latch controllers need to be analyzed to be able to
guarantee correct scan test operations with these elements present. The analysis is
split in two part, in this section latch controllers are analyzed that drive latches in
the data path. The next section analyzes the timing of the latch controllers that drive
flip-flops.

LCS 01

d d q
z

d q

te
titi

te

control
block

data path

request acknowledge condition

clk slave

clk master

clk local

Figure 4.3: Latch controller driving a latch.

74 Chapter 4. Full scan test for handshake circuits

Figure 4.3 shows a latch controller that drives a latch, including all relevant con-
trol signals. Clkmaster and clkslave are used to clock the latch. The LCS signal
controls the multiplexer in the latch controller. In the next two sections, the circuit in
Figure 4.3 is analyzed for timing constraints. First the timing is analyzed during the
data path test, afterwards it is analyzed during the control block test.

Data-path test timing

During the data-path test, the circuit is kept constantly in test-mode, by keeping LCS
high. In this mode, the local clock clklocal is equal (however slightly delayed) to
clkmaster. The clock timing in this case corresponds to the default situation as shown
in Section 3.4.1, provided a large enough non-overlap time is present to prevent prob-
lems with skew and the delay of the latch controller.

Control-block test timing

During the control-block test, the circuit has to switch between test-mode and normal-
mode. The timing of the control signals is shown in Figure 4.4. The test-mode is used
during scan shift cycles, the normal-mode is used during the evaluation cycle. As
explained in the previous section, the change in test mode can cause the local clock
driving a latch to change. This can destroy the state of the latch. In most cases this is
not important since these registers are not used during the control block test. There
are however two situations in which the registers are used to support the control block
test. The first situation is during scan shifts where the registers can be part of the scan
chain. This is executed in test mode and therefore the registers are clocked normally
and can be used without problems. The second usage of a register during control
block test is when the output of the register forms an input for the control block. This
situation is shown in Figure 4.2 by the condition signals going from the data path
to the control block. It is vital that condition signals remain stable until the control
block has captured them.

The latch situation is shown in Figure 4.3. The condition signal is driven by the
slave latch. It becomes valid after the falling edge of the slave clock clkslave, the
corresponding validity interval vslave is shown in Figure 4.4. The condition signal
has to remain valid until the data has been captured in the control block. This occurs
at the falling edge of the master clock clkmaster, that clocks the scan C-elements in
the control block, at the end of the evaluation cycle. The required stability interval
smaster is also shown in Figure 4.4. The timing intervals show that the slave latch to
control block interface is always safe in terms of timing.

Besides this data transfer, the master latch to slave latch transfer is also important.
The slave latch captures the data from the master latch during the first half of the
evaluation cycle. For this transfer, the validity interval of the master latch vmaster has
to overlap with the stability interval of the slave latch sslave. During the evaluation

4.1. Design for testability 75

smaster

vslave

clk master

clk slave

tdq

clk local

LCS

tdq

tsetup tcq

tsetup thold

tskew

tsetup

tcq

vmaster
sslave

evaluation data captured

scan-in phase
(test mode)

evaluation phase
(normal mode)

scan-out phase
(test mode)

req = 1

req = 0

Figure 4.4: Latch timing during control-block evaluation.

cycle, the latch-control select signal LCS has to be switched to normal mode. This
switch can change the state of the local clock signal and thereby ending the validity
interval of the master latch. To guarantee that the validity interval of the master latch
is sufficiently long, clklocal has to be kept low as long as clkslave is still high. This
implies that switching the LCS signal must be delayed until after the falling edge of
clkslave.

This condition will guarantee the correct operation with latches. In Figure 4.4, the
LCS signal is set up to switch at 50% of the clock cycle, when both master and slave
clock are low. Since on a tester the test-mode signal is defined by the same timing
parameters as the combinational inputs to the circuit, other inputs of the circuit also
will only become valid at 50% of the cycle. However, since the scan test is executed at
low speed, the data inputs still have sufficient time to propagate to the scan elements.
In Section 4.4 test control logic is presented that supports the generation of the LCS
signal from input signals that switch normally at the beginning of the clock cycle.

4.1.4 Flip-flop timing constraints

In this section the timing of a latch controller that drives a flip-flop register is ana-
lyzed. The circuit is shown in Figure 4.5. One of the differences compared to the

76 Chapter 4. Full scan test for handshake circuits

latch circuit are the additional inverters. These are required because a flip-flop is
clocked on the inverse polarity of a master latch clock. The flip-flop react to the ris-
ing edge of the clock, as explained in Chapter 3, this means that the clock signal is
sensitive for skew and clock tree balancing might be required.

LCS 01

d
z

d q

clk local

te
ti

clk flip-flop

ti

te

control
block

data path

request acknowledge condition

Figure 4.5: Latch controller driving a flip-flop.

Data path test timing

As said before, during the data path test the circuit is kept constantly in test-mode,
by keeping LCS high. The local clock clklocal for the flip-flops is therefore equal
to clkflip−flop. The clock timing in this case corresponds to the default situation as
shown in Section 3.4.2. To prevent problems with skew, it might be necessary to
insert buffers in the clock to balance it.

Control block test timing

If flip-flops are used as registers, the situation is a little more complicated. Now only
one clock signal is available to stop the propagation of incorrect values. The flip-flop
controller is shown in Figure 4.5 and the timing of the control signals in Figure 4.6.
The flip-flop output becomes valid at the rising edge of the local clock clklocal in the
beginning of the evaluation cycle and has to remain valid until the falling edge of
clock clkmaster, which is used to capture the data in the control block. During this
interval no rising edge may occur on clklocal, a falling edge however may occur since
this does not change the output of a flip-flop.

There are two requirements to ensure that no rising edge occurs on the clock of
the flip-flop before the falling edge of clkmaster. The first requirement is that the
request signal going into the multiplexer is stable between the time the multiplexer is

4.1. Design for testability 77

smaster

vflip-flop

clk master

clk flip-flop

clk local

LCS

tsetup tcq

tsetup thold

tskew

tcq

tcq

evaluation data captured

scan-in phase
(test mode)

evaluation phase
(normal mode)

scan-out phase
(test mode)

req = 1

req = 1

req = 0
tskew

Figure 4.6: Flip-flop timing during control-block evaluation.

switched into normal mode and the falling edge of clkmaster. The second requirement
is that clock clkflip−flop has to remain high until after the multiplexer in the latch
controller is switched into normal mode.

The requirement that the request signal has to be stable leads to two possible valid
situations: the request signal is constant 0 or the request signal is constant 1. When
the request signal is constant 0, the local clock remains constant at 1. In this situation,
the acknowledge signal is constant 0 and output z is stable. If the request signal is
constant 1, then there is a falling transition on the local clock when LCS switches to
zero. This leads to a rising transition on the acknowledge signal. The transition has
no influence on the output z, which remains stable. The last problem is to guarantee
that the request is stable between the falling edge of LCS and the falling edge of
clkmaster. The request signal can originate from a slave latch, a primary input or
from another latch controller, further elaborated below.

• Slave latch: The majority of the request signals will originate from a slave
latch. These request signals will be stable since the slave latches, clocked by
clkslave, are closed before the falling edge of LCS.

• Primary input: Primary inputs normally use the same timing parameters as the
LCS signal. This can potentially lead to a race between the input and the

78 Chapter 4. Full scan test for handshake circuits

LCS signal. In situations where this could occur, the timing of the primary
inputs should be changed to switch earlier in the clock cycle. Alternatively the
LCS signal could be slightly delayed. Most situations where the request signal
is originating from a primary input, the register is used to capture an external
data input. By avoiding flip-flops to capture external inputs, potential problems
can be avoided.

• Latch controller: The acknowledge signals of the latch controller can have a
rising transition when LCS is switched into normal mode. The effect of such
a rising edge on an acknowledge signal is to lower the corresponding request
signal. Such a path always contains a scan C-element or another scan element
that stops the transition from propagating. If the scan element would not be
present, a combinational loop would exist and as is explained in Section 4.3.2,
a combinational loop always will be broken by inserting a scan element in it.

In Figure 4.6, clklocal shows the timing of the flip-flop clock signal. The falling
edge of the clock is delayed until after LCS has switched to zero. This is imple-
mented by using the inverse of the master clock clkmaster, as the flip-flop clock.
Unlike normal clocks for flip-flops, the location of the falling edge of the clock is
important for correct operation with latch controllers. When using one of the on-chip
clock generators shown in Figure 3.23, therefore always the variant shown in Fig-
ure 3.23(b) should be used. This ensures correct timing since the falling edge of the
flip-flop clock is delayed until after the falling edge of LCS.

4.2 Test generation

The circuit modifications described in the previous section introduce a hierarchical
structure in the circuit. Two lower level blocks for the control block and data path
are combined into a top level block. The two lower level blocks are tested separately.
This requires the use of a test method that supports hierarchy. Well-known examples
of such test methods are the core-based test proposal (P1500) [38] and the macro
test method [39]. Both of these methods use the concepts of a test-pattern and a
test-protocol that together define a complete test for a circuit.

Test pattern A test pattern contains a set of stimulus and response values. A test
pattern is part of a test-pattern set. Such a set contains all test patterns required
to test a circuit with a certain fault coverage.

Test protocol A test protocol defines how a test pattern should be applied to the
circuit. The initial test protocol describes this information at the lowest (block)
level. An expanded protocol describes the information at a higher (or top)
level.

4.2. Test generation 79

Remodelling
for ATPG

(see Fig 4.8)

Adding scan
(see Fig 3.14 ... 3.19)

Original C-element
(see Fig 3.7 ... 3.9)

ATPG patterns:
100 % coverage

Final Test
100 % coverage

Figure 4.7: Remodelling principle.

The test-generation process consists of two steps. First, patterns and initial pro-
tocols are generated, both for the control block and for the data path. Second, these
initial test protocols are expanded to top-level. The pattern generation and protocol
expansion steps are not completely independent from each other, as will be discussed
in the next section. For successful test-protocol expansion some constraints have to
be placed on the test pattern generation process.

4.2.1 Test-pattern generation

Although the new scan C-elements and the scan latches are functionally correct scan
elements, existing ATPG tools do not necessarily recognize them as such. These
tools typically only recognize flip-flops as valid scan elements. The latch function of
a C-element is implemented by a feedback loop. ATPG tools typically mark such a
loop as invalid and then try to generate test vectors that test as much as possible of
the remaining parts of the circuit. Another problem is that C-elements have two or
more normal-mode inputs, which by some internal function determine the next state
of the element.

Both problems can be solved by using a remodelled circuit that has the same test
properties as the original circuit. Since the remodelled circuit is only used for test-
pattern generation, it does not have to be able to operate in the normal asynchronous
mode. The basic principle of remodelling is shown in Figure 4.7. From the original
netlist with C-elements, two other netlists are derived. In one, the C-elements are
replaced by scan C-elements; this is the final scan testable netlist. The other, in
which C-elements are replaced by remodelled C-elements, is the netlist to be used
exclusively for test-pattern generation.

For remodelling to work, two requirements have to be fulfilled:

80 Chapter 4. Full scan test for handshake circuits

• The test patterns generated with the remodelled elements have to be valid for
the real circuit. This means that the test responses from the remodelled circuit
are equal to the test responses of the real circuit.

• The test patterns that are generated have to be necessary and sufficient. This
is to guarantee that all faults in the real circuit are covered by faults in the
remodelled circuit and that all patterns that are generated increase the fault
coverage of the real circuit.

If this is the case, then the test patterns calculated for the remodelled circuit are
able to test the real circuit with 100% fault coverage, of course provided the ATPG
tool could find a test with 100% coverage for the remodelled circuit. Faults that are
untestable in the remodel circuit directly lead to a reduced fault coverage in the real
circuit.

z

a

b
ti

te

clk

d q

te
ti

Figure 4.8: Remodelled C-element.

The circuit used to remodel a scan C-element is constructed by taking the orig-
inal C-element and inserting a scan flip-flop in the feedback loop. In Figure 4.8, an
example is given for an asymmetric version of a C-element. Every type of C-element
requires its own remodelled version. The key to this structure is that the function
located at the data-input of the flip-flop is the same function that is used in the orig-
inal C-element to calculate the next state function. This means that whenever the
functional inputs of the two elements are the same, the next state will also be the
same. Furthermore, the logic before the flip-flop is part of the combinational cir-
cuit for which the ATPG tool will generate test patterns. This ensures that by using
these patterns on the scan C-elements all the stuck-at faults in the logic part of the
scan C-elements are tested. This corresponds to the bold parts in Figure 3.14 and
Figure 3.15. The remaining faults in the scan C-elements are tested with a scan con-
tinuity test. Remodelling of latches is carried out by replacing them with flip-flops.

4.2.2 Test-protocol expansion

During test-protocol expansion, the initial protocols that were created by the ATPG
tool are translated into top-level protocols. The tool used to do this was developed

4.2. Test generation 81

TDI

TDO

a b

Control block

Data path

d q

te
ti

dq

te
tilogic

logic

Figure 4.9: Protocol expansion in the initial circuit.

for the macro test flow [39]. It traces signal paths in the circuit to find a path from a
pin of a lower level block to a top-level pin or to the scan chain.

The problem is illustrated in Figure 4.9, which shows an example of the test
protocol expansion problem. Test patterns and initial protocols are available for both
sub-blocks. During the generation of these files, no information was used about the
interconnection between the two blocks. This means that the ATPG tool has assumed
complete controllability and observability of the interface signals, which might not
be the case in the real circuit.

In order to find paths to observe and control the pins of the interface signals (a and
b in Figure 4.9), the test-protocol expansion tool needs to trace the interface signals
back to observable and controllable locations. This is complicated by the fact that
tracing these signals sometimes requires that the surrounding logic is in a state in
which the signals can propagate through the logic to a scan cell or an input.

The application of this tool for an asynchronous circuit leads to the problem that
some circuit structures cannot be correctly traced. For example in the latch controllers
it is possible that the test-expansion tool traces a data signal from a handshake data
input to the clock signal. This will result in an error and hence the protocol cannot be
expanded to top-level.

The solution to this problem consists of two parts. First, some restrictions are put
on the interface between the two sub blocks and second, an abstract description of the
scan chain is used to hide the internal asynchronous logic of the block. This removes
the need to trace interface signals, thereby avoiding problems with latch controllers
and in addition improving the speed to the tool.

The restriction put on the interface between the sub-blocks is that all interface
signals have to (seem to) originate directly from a scan cell. In this way, all interface

82 Chapter 4. Full scan test for handshake circuits

MOVE COPY(a)

(b)

Before

After

(c)

(d)

Interface

Interface

Figure 4.10: Move and copy operations to enable protocol expansion.

signals can be directly controlled from the scan chain. To fulfill this restriction, logic
gates that are located between the scan cell and the interface pin are moved or copied
between the sub-blocks as shown in Figure 4.10. In Figure 4.10(a), a logic gate is
shown that only drives an interface pin and no other gates in its own block. This gate
is moved to the other block, as shown in Figure 4.10(b). When the gate also drives
other gates in its own block (Figure 4.10(c)), it cannot be moved and it is copied
instead (Figure 4.10(d)). The block is only copied in the remodel netlist; it does not
introduce additional gates in the real netlist. In rare cases where a conflict with a latch
controller occurs, this requires an additional scan element in the signal or a redesign
of some handshake components. If all interface signals originate from a scan cell, the
circuit has a structure as depicted in Figure 4.11. All interface signals can be directly
controlled from the scan chain.

To complete the test-protocol expansion the interface signals also need to be ob-
served during scan. This is required because the ATPG tool includes the expected
responses of the interface signals in the pattern file. However, observing these sig-
nals does not result in a higher fault coverage. Any fault on one of the interface
signals is already detected if the signal is used to control a pin. Furthermore, the out-
put value of the scan element from which the interface pin originates can be observed

4.3. Additional modifications 83

TDI

TDO

a b

Control block

Data path

d q

te
ti

dq

te
tilogic

logic

Figure 4.11: Protocol expansion in the modified circuit.

by scanning out the value via the scan chain. As a result the interface signals do not
need to be observed during test.

To implement the previous approach, the ATPG remodelling has to be changed
in order to avoid the generation of observability requirements for the interface lines.
This is accomplished by removing the outgoing interface signals from the remodelled
sub-blocks, indicated by the dotted lines in Figure 4.11. It is not required that these
signals are observed and they are not traced during protocol expansion.

Normally, the tracing of signals provides the information on how to control a sig-
nal. Since the output interface signals are now disconnected, it is no longer possible
to trace the input interface signals. This is solved by adding this information to the
abstract description of the scan chain that is used for the protocol expansion. The
description is automatically generated by the test tools described in the appendix A.
For each interface signal it is specified which scan element is connected to it. Since
all interface signals are connected to scan elements this is always possible.

The test-protocol expansion tool is only given the abstract descriptions of the
scan chains in the sub-blocks and a top-level netlist containing empty shells of these
blocks and the interconnections between the blocks. This is sufficient information to
create valid expanded top-level protocols.

4.3 Additional modifications

The circuits that were described so far did not include some structures that can occur
in real handshake circuits. These structures make testing more complicated, but do
not change the principles of the test method previously described. The subjects that

84 Chapter 4. Full scan test for handshake circuits

complicate testing are:

• Initialization

• Combinational loops

• Mutex elements

• Multiplexers

• Redundancy

These problems require additional test modifications, such as more scan ele-
ments. In some cases the problems can be avoided by redesigning certain handshake
components. In that sense, testing can be considered to be a new dimension to eval-
uate the design of a handshake component.

4.3.1 Initialization

The first issue that has not yet been addressed is that of reset and initialization. In
handshake circuit this requires two things:

• Initialization of the control block

• (P-)Reset of sequential elements in the circuit

The initialization of the control block is based on the initialization property of
handshake circuits [8]. Handshake components are initialized by lowering the re-
quest signals of its passive ports. The component will subsequently lower the request
signal of all its active ports, thereby initializing the components connected to it. This
continues until passive components are reached that do not have active ports. Ini-
tialization is then completed in the reverse direction, by lowering the acknowledge
signal of the active ports. The top-level component is connected to the start-up chan-
nel. Therefore the start-up channel is used for initialization by making it low. After
the circuit is initialized, the start-up signal is raised, which functions as the initial
handshake from which all other activity follows.

The data-path registers and a few of the handshake components in the control
block cannot be initialized in this way. These handshake components have to use
(re-)setable memory elements that are directly connected to a reset signal. Since the
function of this reset signal is the same as the function of the request of the start-up
channel, in a handshake circuit these two signals are combined into one signal.

If the circuit is viewed from a scan-test perspective, then the function of the start-
up channel is no longer the same as the function of the reset signal. For scan testing,

4.3. Additional modifications 85

the start-up signal is just a normal data input to the circuit. As a result the start-
up signal can no longer be shared with the reset signal and two separate signal are
required.

Besides the use of a global reset, it is also possible to reset the variables of a
function every time the function is called. In the circuit this leads to locally generated
reset signals. To make these signals controllable during the scan-test, these reset
signals have to be reconnected to the global reset signal. This can be implemented
with a multiplexer that is controlled by a dedicated control signal. This control signal
has to be active during the entire test. Unfortunately this reduces the test coverage
of the circuitry that generates the local reset signal. To prevent this, additional scan
elements can be inserted. A better solution is to avoid the situation altogether by not
programming functions with initialized variables in Tangram. Instead, if a variable
needs to be initialized it can be assigned an initial value at the beginning of a function.
Both adding scan elements and redesigning the circuits increases the circuit area.

4.3.2 Combinational loops

In Tangram it is possible to create a program that leads to a combinational loop in
the handshake control circuit. An example is shown in Listing 4.1, which results in
a feedback loop around a NOR gate. Although this program is not practical, since
it does not do anything useful, it illustrates that combinational loops can be pro-
grammed in Tangram. Combinational loops are not common, but when they occur
they would have a serious impact on the achievable fault coverage. The ATPG tool
will mark the loop as untestable. In addition it is likely that a number of faults in the
surrounding logic can also not be tested.

Listing 4.1 Tangram program that leads to a combinational loop

forever do
skip

od

To remove combinational loops from the circuit, the circuit is analyzed and any
loop that is found is broken by inserting a scan element in the loop. Most loops
occur in known constructs that are easily recognized and for which a pre-designed
circuit modification exists that removes the loop. The circuit modification consists of
adding a new scan cell somewhere in the loop. If the type of loop is not recognized,
a transparent scan flip-flop is inserted in the loop.

4.3.3 Mutex

As explained in Section 2.2.5, the function of a mutual exclusion (mutex) element is
to prevent that both its outputs are active at the same time. If both request inputs be-

86 Chapter 4. Full scan test for handshake circuits

areq

b req

back

aack
areq

b req

aack

(a) (b)

Figure 4.12: Original mutex elements, including in (b) a version with only one output.

come high simultaneously, the mutex must arbitrate between them and only activate
one of its outputs. A possible metastable situation that can result has to be kept inside
the element until it is resolved. The implementation of the mutex is shown again in
Figure 4.12(a). Figure 4.12(b) shows an alternative with only an aack output that is
also used in handshake circuits.

For testing the major problem with mutex elements is the undeterministic behav-
ior during test (Section 2.2.5). A possible solution to this problem is to modify the
element in such a way that it becomes deterministic in test-mode. One way to accom-
plish this is by disabling the feedback loops in test-mode, as shown in Figure 4.13(a).
In test mode (tm = 1) this circuit behaves as two independent buffers. During test
generation it is remodelled with two buffers as shown in Figure 4.13(b). This modifi-
cation has an impact on both the fault coverage and the performance of the element.
Because the test-mode signal has to be active during the entire test, the gates driven

tm

(a) Real circuit

b req

back

aack

q

p

(b) Remodelled circuit

back

aack

areq

b req

areq

Figure 4.13: Test Mutex in which both NAND gates are disabled during test, (a)
circuit, (b) remodel circuit.

4.3. Additional modifications 87

tm

(a) Real circuit

b req

back

aack

q

p

(b) Remodelled circuit

aack

areq

b req

areq

back

Figure 4.14: Test Mutex in which only the bottom NAND is disabled during test
resulting in higher fault coverage, (a) circuit, (b) remodel circuit.

by this signal are not tested. In the case of the mutual exclusion element this is also
the case for the feedback loops in the circuit. The increased logic depth may also
influence the performance of the element, both in terms of overall speed and the time
required to resolve metastability.

For the mutex alternative with only the aack output, the modification in Fig-
ure 4.13 results in further reduced fault coverage. The back output cannot be observed
and therefore the logic controlling breq cannot be tested.

By only disabling one of the feedback signals this problem can be avoided since
now output aack is a function of both inputs. This structure is shown in Figure 4.14.

Scan enable

(a) Real circuit

b req

back

aack

(b) Remodelled circuit

back

aack

areq

b req

areq

Figure 4.15: Delayed evaluation mutex, (a) circuit, (b) remodel circuit.

88 Chapter 4. Full scan test for handshake circuits

A potential problem of this solution is that the cross-coupled gates are no longer
identical. The implementation in Figure 4.15 uses a different method to obtain a de-
terministic response. The main advantage is that it uses the original NAND-based
mutex. During scan shifts the top NAND input is kept at zero which will force the
mutex in a deterministic initial state. During the evaluation cycle, the areq input is re-
leased, however only after a delay to make sure that the circuit inputs have stabilized
and no hazards can occur that might change the internal state of the mutex.

4.3.4 Multiplexers

Multiplexers are used in case a variable handshake component has multiple write
sources. An implementation for a two channel multiplexer is given in Figure 4.16.
This can be generalized for multiple channels depending on the number of locations
that need to write into the variable.

aack

areq

b req

back

b select

aselect

x req

xack

to variable

to data path

to data path

multiplexer
core

multiplexer
core

Figure 4.16: Implementation of the multiplexer component, using one multiplexer
core per input channel.

Multiplexers are activated by one of the passive channels, channel a or b in Fig-
ure 4.16. If a passive channel is activated, the corresponding select signal is raised
and a request is passed on to the variable via channel x. The surrounding circuitry has
to ensure that only one passive channel of the multiplexer is activated at once. Every
passive channel is connected to a multiplexer core that will generate the select signal
and the acknowledge for that channel. The multiplexer cores can be implemented in
a number of alternative ways, as shown in Figure 4.17.

The select signals generated by the multiplexer cores are connected to the data

4.3. Additional modifications 89

areqxack

aselectaack aselectaack aselectaack

xack areq xack areq

(a) (b) (c)

+

CC

+

C

C

_

_

Figure 4.17: Alternative implementations for the multiplexer core, (a) original ver-
sion, (b) version modified for protocol expansion, (c) version modified for protocol
expansion and the prevention of global loops.

path. They are used as parameters for the data-path logic that calculates the new
value for the variable. Since the select signals form an interface signal between the
control block and the data path, they are analyzed during test generation to determine
whether or not they originate from a scan element, as explained in Section 4.2.2.

In the implementation of the multiplexer core shown in Figure 4.17(a) this is not
the case. The select signal comes from an OR gate, and a back-trace procedure is
started to find out which gates need to be moved or copy to the data path. Since
the select signals of the multiplexer are the most common data-path parameters, this
leads to many and often large back-trace procedures to find scan elements to use in
the test-protocol expansion. In fact, this often result in a failure if a signal is traced
back to a latch controller.

To solve this problem the multiplexer core implementation shown in Figure 4.17(b)
can be used. In this implementation the select signal is generated in a scan element
and no back-trace is required. However the circuit can potentially result a combi-
national loop in the control block. For example, a loop can start from the request
areq, go via channel x to the latch controller and arrive in the multiplexer core via
the xack input. Then it is passed on to aack and from there it is sometimes possible
to find a combinational path back to areq to complete a loop. If such a loop is identi-
fied, by the analysis described in Section 4.3.2, the third alternative implementation
shown in Figure 4.17(c) can be used. This implementation is based on two scan C-
elements and therefore more expensive to use, but since it is only required if there is
a combinational loop, the additional scan element would be required anyway.

90 Chapter 4. Full scan test for handshake circuits

4.3.5 Redundancy

During some initial experiments with the scan method, it was found that the achiev-
able fault coverage was below expectations. Analysis showed that this was due to
redundant logic in the control block. The number of untestable gates because of
redundancy is typically smaller than 1%. Although the individual handshake compo-
nents are not redundant, redundancy can occur if two or more handshake components
are connected together. At the interface between the components some gates may be-
come redundant. The reason for this is that the combination of the two components
can restrict the freedom of the individual components. The components in isolation
are designed to handle situations that can no longer occur if components are con-
nected together.

There are two ways to remove the redundancy from the circuit. The first is to
choose an alternative implementation for (one of) the components. The second is to
analyze the redundant components together, to find new optimization rules. These
optimization rules are then added to the Tangram compiler, thereby stepwise improv-
ing the compiler. A small disadvantage of this approach is that the link between the
original Tangram source code and the final circuit netlist is becoming less obvious.
This complicates the identification of specific signals during simulation and debug.

In the next section, two examples are given in which redundancy is present in
a handshake circuit. In the first example the components are analyzed together and
this leads to a circuit optimization. In the second example, a handshake component
is redesigned.

Interfaces between a passivator and a sequencer

The combination of a passivator component and a sequencer component is used in for
example the implementation of FIFO buffers. The redundant part of the implementa-
tion is shown in Figure 4.18. Whenever the breq signal is lowered, the back signal will
follow after a short delay. This leads to an untestable stuck-at-0 fault at the input of
the NOR gate in the sequencer. To test this fault the output of the C-element has to be
zero and back has to be one. However by making the C-element zero, breq becomes
low and in turn also back becomes low. This leads to a contradiction and as a result
to an untestable fault.

Handshake-level analysis of the two components combined showed that it is safe
to resolve this redundancy by replacing the NOR gate with the untestable fault by
an inverter. The resulting circuit will already activate channel c during the return-to-
zero phase of channel b. This particular optimization was known to exist [48], but
the testing result showed that the optimization is mandatory to eliminate redundancy
from the circuit.

4.3. Additional modifications 91

xpsv

;

C

+

part of passivator
component

sequencer component

sa0 untestable

x

b c

a

a

c

breq

back

(a)

(b)

Figure 4.18: Section of FIFO circuit containing redundancy (a) handshake circuit,
(b) gate level implementation.

State encoding in a multi channel sequencer

One reason for the small amount of redundancy in Tangram based handshake circuits
is the sparse state encoding used in Tangram. All the state information of a Tan-
gram circuit is stored locally in the handshake components and channels. Because
every component is designed as a separate entity, this state variable can be deeply
embedded in the design. The disadvantage of this method is of course that it re-
quires many state variables. In order to reduce the cost of state variables, several
large multi-channel components have been designed. Most significant of these is a
multi-channel sequencer [4] that uses an internal Gray counter that contains halve the
number of state variables. An implementation of a four channel sequencer is shown
in Figure 4.19.

Although this circuit is smaller than a tree of two-channel sequencers, it can re-
sult in redundant circuitry whenever a combinational path exists from the request of
a channel to the acknowledge of the next channel. In the figure, one such a combi-

92 Chapter 4. Full scan test for handshake circuits

C

C

Combinational connection

+

+

back

z0

z0 z1

z1

dack

b

areq

eack

dack

cack

back

areq b req

creq

d req

ereq

aack

;

c d e

a

1

(a) (b)

cack

2 3
4

Figure 4.19: Implementation of a multi channel sequencer (a) component symbol,
(b) gate-level implementation.

national path is shown, indicated by the dotted line. In this example the back input of
the NOR gate driving creq is redundant, as shown in Equation 4.1:

creq = back + z0 · z1 = z0 · areq · z1 + z0 + z1 = z0 + z1 = z0 · z1 (4.1)

The redundant logic can be removed, if it can be proven that the resulting cir-
cuit is still functionally correct. Unlike in the previous example this is not directly
clear since there are more possibilities in which this type of redundancy can occur.
Instead, to remove this redundancy original two channel sequencers are used in mul-
tiple levels. Since the multi channel sequencer is only redundant when connected
to a combinational path, more accurate circuit analysis can be used to identify these
channels. Depending on the analysis either the redundancy can be removed or a
two-channel sequencers is used for these channels. For the other channels the multi
channel sequencer can then be used without problems.

4.4. Test control logic 93

4.4 Test control logic

The scan testable handshake circuit can contain four types of scan elements:

1. Scan C-elements

2. Scan latches

3. Scan flip-flops

4. Transparent scan flip-flops

The clock and test-enable inputs of these elements have to be connected to a min-
imal number of global control signals. Figure 4.20 shows how all scan elements can
be controlled by using five top-level signals. The scan C-elements use two LSSD
style non-overlapping clocks that are generated from clkmaster and te with a de-
multiplexer. The clock signals for the latches and flip-flops in the data path are con-
nected through the latch controllers.

The circuit can operate in four modes. The signal state of the four test signals
during the four possible operational modes is given in Table 4.1. In the asynchronous
mode, the circuit operates as an unmodified asynchronous circuit. All top-level sig-
nals have a fixed value. The other three modes are used for testing. In these modes the
clocks are active, indicated by the c (for clock) in the table. In each of these modes
the circuit will go through several states, governed by the clocks, to either capture
evaluation data or perform scan shifts.

Table 4.1: Test-signal definitions for the various operational modes.

Mode clocks (3x) tm te LCS

Asynchronous 1 0 0 0

Scan shift c 1 1 1

Evaluation Control c 1 0 0

Evaluation Data c 1 0 1

Every latch controller drives several latches or flip-flops and therefore the number
of latch controllers is small compared to the number of latches and flip-flops. Hence
their impact on connections to the test signals is also small. The scan enable signal
is shown bold in Figure 4.20; the wiring required for this signal is the same as would
be required in a synchronous circuit. The wiring for the scan-chain routing is also the
same and for clarity is not shown in the figure.

94 Chapter 4. Full scan test for handshake circuits

C

Scan latch

Scan C-element

te

Scan flip-flop

D

L2

D

L1

D

L2

D

Latch
C

ontroller
Latch
C

ontroller

01

01

0

1

Transparent
scan flip-flop

D

L2

clk flip-flop

clk master

clk slave

LCS

D

L1

Figure 4.20: Test control logic, showing the four types of scan elements and their
global connections. In total five top-level test signals are used to control all types of
scan elements.

If primitive LSSD flip-flops and L1L2∗ testing are not used, it is more efficient
to design circuits that use flip-flops instead of latches. A flip-flop is smaller in area
than the combination of a master latch and a slave latch. By only using flip-flops also
the amount of wiring can be reduced since in that case many connections to the slave
clock are removed.

Finally test mutexes and asynchronously re(setable) elements can be present. For
the re(setable) elements a reset signal has to be added and for the mutex a test-mode
signal is required. If all possible elements are present, seven test signals are required
to control the circuit during test. In the next sections optimizations are introduced
that will reduce this number of signals.

4.4. Test control logic 95

4.4.1 Test control optimization

In this section three optimizations are shown that can be used to reduce the num-
ber of top-level test signals required for the test method. First the optimizations are
discussed and afterwards all optimizations are combined with the testable handshake
circuit to show the reduction in the number of test signals.

Clock generator

The largest reduction in top-level pins can be obtained by using an on-chip clock gen-
erator as was shown in Figure 3.23. From the timing analysis of the latch controllers
followed that the option in Figure 3.23(b) has to be used for safe circuit operation.
The circuit shown there, however, does not support the required asynchronous mode
in which both the master and the slave clock have to be constant one. In Figure 4.21
this is solved by using the test-mode signal tm to make the slave clock one. The
master clock can be kept at one by making the reference clock zero. Alternatively,
the master clock can also be controlled by the test mode signal just like the slave
clock. In that situation the reference clock can be undefined during asynchronous
mode. The flip-flop clock may also be undefined, since it is only connected to the
latch controllers.

If the on-chip clock generator is used, it becomes difficult to ensure that the latch
control select signals LCS switches at the correct time, which is when both the mas-
ter clock and the slave clock are zero. A solution is to derive the signal LCSint

d1

d2

d3

External
reference
clock

tm
d4

clk flip-flop

clk master

clk slave

LCS ext

LCS int

Figure 4.21: On-chip clock generator, able to generate three clock signals from the
external reference clock. In addition the circuit can be used to generate a LCS signal
with the correct timing parameters.

96 Chapter 4. Full scan test for handshake circuits

from the slave clock and an external select signal LCSext. This solution is shown
in Figure 4.21. It ensures that the LCSint signal cannot switch to zero before the
slave clock has. Delay d4 in the clock generator should be about half of the total
non-overlap delay d2, after which the master clock will become one. The location of
rising edge of LCSint in the clock cycle is not important as long as it occurs after the
falling edge of the master clock.

clk slave

LCS ext

scan-in phase
(test mode)

evaluation phase
(normal mode)

scan-out phase
(test mode)

LCS int

Figure 4.22: Generating the latch control select (LCS) signal with the on-chip clock
generator from conventionally timed input signals.

A major benefit of using the clock generator to generate the LCS signal is that
the timing of the external select signal LCSext is less stringent. The original LCS
had to switch at around 50 % of the clock cycle, which is a non-typical setting and
can complicate the integration with test for other blocks that use the default timing
parameters, in which signals change at the beginning of the clock cycle. In the new
situation the test for the handshake block can also use the default timing parameters.
The only minor restriction is that the falling edge of LCSext has to occur after the
rising edge of the slave clock. The timing diagram of this situation is shown in
Figure 4.22. The falling edge of the LCSint signal still occurs at around 50 % of the
clock cycle, but it is derived from input signals that have the default timing. Another
benefit is that this allows all other data and select input signals to also switch at
the beginning of the cycle. This means that there is more time for these signals to
propagate through the circuit, which in turn can be used to increase the test clock
speed.

Reset

In Section 4.3.1 it was discussed how a new reset signal is added to the circuit if
there are re-(setable) elements present. The circuit shown in Figure 4.23 can be used

4.4. Test control logic 97

tm

0

1
start-up

d q

clk

reset

reset

TDI

TDO

Figure 4.23: Driving the start-up signal with a scan element during scan mode. Re-
ducing the number of external signals by one.

to reduce these two signals back into one top-level reset signal. In asynchronous
mode both the start-up signal and the internal reset signal are directly controlled
by the external reset signal. During test, the start-up signal is a normal data input
of the handshake circuit and the data for this signal is provided by a scan element.
The signals used to control the scan element are already present for the test of the
handshake circuit itself and no new test signals are added.

Test control block

Large chips often have a Test Control Block (TCB), which can be programmed by
the tester to put the chip in different test modes. When such a TCB is already present
on a chip it can be used to save an additional top-level pin. Figure 4.24 shows how
one bit in the TCB can be used to generate the both the LCS and the internal test

TCB register:
0 0 Asynchronous mode
0 1 Control block test
1 1 Data path test

te
LCS

te

tm

Figure 4.24: Test control block, in which one bit is used to select between control
block test and data path test and a second bit is used to control the test mode signal.

98 Chapter 4. Full scan test for handshake circuits

enable te signal from a single external test enable te signal. A second bit in the TCB
can be used to put the chip in test mode. If a TCB is used for the LCS signal it
must be reprogrammed to switch between control block test and data path test. As an
alternative for the TCB, the LCS signal can also be generated from the OR function
of a scan element and the test enable signal.

Global test control

The three test control optimizations are shown combined in Figure 4.25. When all
possible optimizations are used only two new top-level signals are required, the ref-
erence clock and the test enable, both of which use the default timing parameters.
The reset signals is also shown at top-level, but this is not a new pin since it replaces
the original reset pin. Also the scan-in pin (TDI) and scan-out pin (TDO), both not
shown in the figure, can be multiplexed onto existing data pins.

Scan testable

Handshake
Circuit

Clock generator

Reset circuitTest control block

te

reset
start-up

reference
clk

reset

tm

clk flip-flop

clk master

clk slave

LCS ext

LCS int

Figure 4.25: The total number of global control signals can be reduced from 8 down
to 3 by using the proposed optimizations.

4.5. Implementation of the scan-test flow 99

Logic optimization

The resulting test control logic can be further optimized with simple logic optimiza-
tions. One useful optimization is the partial sharing of the latch controller multi-
plexers, which is shown in Figure 4.26. Since one of the inputs to all multiplexers
is always the same, this gate can be shared. A further optimization is to change the
polarity of the LCS signal which results in an implementation that uses less inverters.

01 Shared

request

LCS

Local clock
signal

Local clock
signal

LCS

request
clock
signal

clock
signal

original optimized

Figure 4.26: Logic optimization of the multiplexers in the latch controllers, an AND
gate is shared by all multiplexers and LCS is inverted to reduce the number of invert-
ers.

4.5 Implementation of the scan-test flow

One of the objectives for the test method was that it could be supported by an au-
tomated test flow. This means that for the scan-test method to be of practical use,
the test method has to be automated. The design and test engineers should spend
minimal time in creating and debugging the test. The circuit and test modifications
are too complex and error prone to be done manually. During the development of the
test-flow, several important guidelines and requirements were followed:

Short development time. By focussing on the specific modifications required for
the testing of handshake circuits and using existing tools for all other functions,
the development time for the entire flow is minimized.

100 Chapter 4. Full scan test for handshake circuits

High ATPG quality. Primary concern is the obtainable fault coverage, but also im-
portant is the minimization of the test time by generating a minimal number of
test patterns. Both can be achieved by using existing and proven ATPG tools.

Compatibility with the test infrastructure. The test has to be executed on standard
and available test equipment and should not require modification of this equip-
ment.

Compatibility with other IP blocks on chip. Handshake circuits are often embed-
ded in larger SoC designs. This means that the test of the handshake circuit
should be compatible with the overall system test. This can be accomplished,
by using the same interfaces and having the same test equipment requirements
and the same test-signal timing definitions.

4.5.1 Test-flow overview

The full-scan test approach leads to the test-flow shown in Figure 4.27. It shows a
newly developed tool: TgScan, which performs all DfT modifications and creates in-
put files for the other tools in the flow. These other tools are all existing tools used
within Philips and known as Computer Aided Test (CAT) tools. These tools have
been developed and widely used for the test generation of synchronous circuits. Three
existing tools will be used, namely an automatic test-pattern generation (ATPG) tool,
a protocol-expansion tool, and a vector-generation tool. Two ATPG runs are carried
out, one for the control block and one for the data path. The resulting two initial pro-
tocols are expanded to create top-level protocols and finally combined with the test
patterns in the vector-generation phase. The resulting vectors can be simulated. Sim-
ulation can be done with a functional simulator to assess the functional correctness
of the circuit. Alternatively, the simulation can be performed with a fault simulator
to determine the fault-coverage achieved by the test vectors on the real scan-testable
netlist. The usage of the CAT tools is discussed in detail in appendix A.

4.5.2 Compiler modifications

As discussed in Section 4.1.3, the test approach is based on two separate tests, one
for the control block and one for the data path. The original netlist generator of
Tangram, however, creates a single flat netlist. It would be possible to have the test
tools identify the control block and data path, but a more elegant solution is to modify
the compiler to generate a hierarchical netlist in which the control block and data path
are located in separate hierarchical levels. This was implemented by redesigning the
handshake components to include special transfer gates (consisting of a wire), which
are used to identify the transfers between the control block and the data path. The
compiler recognizes these transfer gates and uses them to separate the control block
from the data path.

4.5. Implementation of the scan-test flow 101

Tangram
netlist

TgScan

ATPG
control

ATPG data

Protocol
Expansion

Test
vectors

Final
netlist

Top level netlist
Control netlist Data netlist

Data
patterns

Control
patterns

Test
Assembly

Initial
protocol

Initial
protocol

Expanded protocols

Functional & Fault
simulation

Figure 4.27: Test flow for handshake circuits, consisting of the new tool TgScan and
a number of existing CAT tools.

The compiler was further optimized to remove many of the problems with redun-
dant circuitry, as identified in Section 4.3.5. New implementations were added, for
example for the multiplexer and the multi-channel sequencer components. Several
new optimizations have been implemented to remove the redundancy caused by con-
necting these handshake components. Finally, the fan-out optimization is postponed
until after the scan modifications are added, since the scan modifications will change
the load of the signals.

4.5.3 TgScan

The central tool in the test flow is the newly developed TgScan. This is the only
newly developed tool and it forms the link between the handshake circuit tools and the
existing CAT tools; hiding the asynchronous internals from the CAT tools. TgScan
achieves two things: it creates a scan netlist and it creates remodelled netlists and
control files for the CAT tools.

Figure 4.28 shows the main tasks that are performed by TgScan. After the first
four common tasks, the activity in the tool splits into a number of tasks that result in
the scan netlist and a number of tasks that results in the CAT files.

102 Chapter 4. Full scan test for handshake circuits

Tangram
netlist

Comb. loop
removal

Scan
insertion

Interface
check

Reset &
Mutex

Add control
logic

Connect test
signals

Remodel flowScan flow

Remodelling

Write CAT
files

Write netlist

scan
netlist

CAT files

Copy
operation

1

2

3

4

5

6

7

8

9

10

Figure 4.28: Flow diagram of TgScan. Input: Tangram netlist, Outputs: Scan netlist
and CAT files.

1. Combinational loop removal. The first task is the identification and removal
of combinational loops. Once a combinational loop is identified, it is deter-
mined if the loop is of a known type. Currently two types are recognized: the
loops caused by multiplexers and loops that can occur in combination with a
mutex element. The removal of the loops caused by the multiplexers has been
discussed in Section 4.3.4. For the other types, a transparent scan flip-flop is
inserted in the loop.

2. Interface check. For a successful expansion of the test-protocols of the control
block and the data path, all interface signals between the control block and
the data path need to originate from a scannable element. As described in

4.5. Implementation of the scan-test flow 103

Section 4.2.2, this requires moving and/or copying gates from the control block
to the data path and vice-versa. The implementation of this function uses a list
of interconnection signals. Signals are removed from this list if they originate
from a scan element. If a logic gate is found that has to be moved, then it is
moved to the other block and the interface signals are adjusted accordingly. If
a logic gate is found that has to be copied, it is labelled as such but not yet
copied since that should only be done in the remodelled netlist and not in the
real netlist. Again the interface list is updated, the inputs of the gate are added
to the list of interface signals, the output of the gate is no longer an interface
signal and is removed from this list. In case no more blocks can be moved or
copied, the result is a netlist in which all interface signals either come from a
scan element or from a logic gate that is labelled to be copied later. In some
cases it is also possible that a signal is traced to a primary input; in that case
the primary input can be used to control the signal directly.

3. Reset & mutex. The scan elements that have a set or reset input and the mutex
elements have to be modified for test. The set or reset signals are connected to
a new independent global reset signal. Some scan elements might be connected
to an internally generated reset signal. In these cases, a second test signal is
used to control a multiplexer that disconnects the internal reset signal from the
scan element and reconnects it to the new global reset signal. Mutex elements
are replaced by test versions and connected to the test mode signal as explained
in Section 4.3.3.

4. Scan insertion. All state-holding cells are replaced by their scannable equiv-
alents. The scan cells are connected together to form a scan chain. Compared
to other scan insertion tools, the functionality to tune the scan insertion is still
very limited. There is neither support for shift register recognition nor for the
balancing of scan chains. Future versions of TgScan will have to incorporate
these functions or use an existing scan-insertion tool for this part of the flow.

After the first set of tasks, the activity is split into two separate flows. The first is
the scan flow that produces the final scan-testable netlist. The second is the remodel
flow, resulting in the remodelled netlist and CAT control files used for test generation.

Scan flow

The data structure representing the netlist already contains an almost complete scan-
testable circuit. There are two remaining tasks:

5. Add control logic. The global control signals and logic are added to the circuit
and connected to the scan elements.

6. Write netlist. The scan netlist is completed and written to the scan-netlist file.

104 Chapter 4. Full scan test for handshake circuits

Remodel flow

For the remodel flow, TgScan still has to perform a number of tasks:

7. Copy operation. In the interface check block, a number of gates might have
been labelled as copy blocks. They could not be copied before since in that
case they would also be copied in the real scan netlist and cause redundancy
and additional area overhead. The copy operation uses a similar mechanism
as the move operation, only the original cells are not removed. For the cells
that are copied, test patterns will be generated in the data-path test as well as
in the control-block test. This means that the corresponding cells in the real
circuit will be tested twice, which can potentially cause a small increase the
number of test patterns. This is not a fundamental problem and can be solved
by improving the tools used to generate the patterns.

8. Test-signal connection. The remodelled circuit requires different test signals
than the real circuit. In the remodelled circuit, the registers are all connected
to a global clock. The clock signals are disconnected from the signals coming
from the latch controllers and are reconnected to a global clock. The interface
pins that were used by the local clocks are also removed. They have no function
during test generation. Their correct operation is tested implicitly during the
execution of the test. If a fault is present that causes the connections to fail, the
scan chain cannot be operated and hence, the scan-continuity test will fail.

The interface signals between the control block and the data path are all coming
from a scan element. As described in Section 4.2.2, these signals are observed
implicitly and the ATPG step should not put observability requirements on
these signals. This is accomplished by disconnecting the output of the scan
element from the interface pin, creating a dangling pin. The ATPG tool will
ignore these pins and not generate response values for them. This approach
cannot be followed for the signal connecting the scan chain between the data
path and the control block. This signal cannot be removed and needs to be
observed during both the normal-mode and scan-mode. Currently this is solved
by inserting a separate transparent scan flip-flop in the scan chain between the
control block and the data path. Both the normal data input and the scan data
input are connected to the scan-out pin of the data path. A second function
of the transparent scan flip-flop is to act as an anti-skew latch to remove any
potential skew problems between the control block and data path.

9. Remodelling. For cells that need to be remodelled for test-pattern generation,
a remodel cell is defined in the library. In the remodelling step, original cells
are replaced by their remodelled equivalents. Two types of cells are remod-
elled. The first type are scan elements consisting of a C-element or a latch.
Such a scan element is remodelled because the ATPG tool does not recognize

4.6. Summary 105

the original scan elements. The second type of cells that are remodelled are
cells that use redundant inputs. An example of this type of cells are the output
buffers of the mutex elements. These cells are remodelled to get a more accu-
rate calculation of the fault coverage of the generated patterns. If these cells
were not remodelled, the reported fault coverage would be overly pessimistic.

10. Write CAT files. The remodelled netlist is now completed and from this netlist
the data-path and control-block netlists are written to file. Finally the CAT
control files and the top-level netlist are generated and also written to file.

The operations performed by TgScan are not computationally complex. For the
circuits processed until now, containing up to 6k gates, computation time remained
well under one minute on a HP workstation. This included the time spend on reading
and writing the netlists and other files.

4.6 Summary

The scan method introduced in this chapter, can be used to make any handshake
circuit designed with the Tangram toolkit scan testable. The main characteristic is
that the control block and the data path are tested separately. This prevents problems
with the control-data interface and allows full testability of the interface signals.

Besides the main scan modification that results in the tests for control block and
data path, additional modifications are required in the control block to increase its
achievable fault coverage. Some of these modifications are implemented in the Tan-
gram compiler to produce alternative designs that are better suited to the scan test
method. Other modifications are carried out on the final circuit. These involve, for
example, the mutex elements. Mutex elements are essential for the asynchronous
operation but require test modifications to be tested with the scan test method.

The scan test method was designed to work with existing test tools for test-pattern
generation. To make ATPG work with the circuit, extensive use is made of remod-
elling. The disadvantage of this approach is that the link between the actual circuit
and the generated tests is reduced, which can complicate debugging of the test and
the circuit. The final test is generated by a test-protocol expansion tool, already avail-
able in the test tools that were used. To make this tool work properly, the handshake
circuits are modified to make all interface signals between the control block and data
path originate from a scan cell. This hides the internal asynchronous structures from
the protocol expansion tool.

The result is a complete scan-test method that includes the automatic insertion of
scan elements into a handshake circuit and the automatic generation of a test for that
circuit.

Chapter 5

Results

To assess the costs and benefits of out scan-test method, a number of experiments
have been carried out. We start with the evaluation of individual scan C-elements,
that form the essential basic components for the test method. This is followed by the
presentation of the scan test modifications of several complete handshake circuits.
Finally some work is presented on a demonstrator circuit that has been developed
using the scan test method.

5.1 Scan C-elements

The scan C-elements are the elements that have the most impact on the final proper-
ties of the scan-testable circuit. The reason for this is the extensive modification that
is required to make a C-element scan-testable, as described in Section 3.3.3. Follow-
ing these design principles, a family of composite scan C-elements has been devel-
oped. During the development of the scan method, the composite scan C-elements
were used to test the control block. This was used to demonstrate the feasibility of
using a scan method to test handshake circuits. A library with primitive cells was
developed in a later stage by Philips Semiconductors. This library contains prim-
itive versions of seven different C-elements both in a latch and a flip-flop version.
These seven C-elements represent over 95% of all C-elements that are present in
a typical handshake circuit design. The remaining C-elements are implemented as
composite cells, either solely based on logic gates or on one of the primitive scan
C-elements customized with logic gates. The two most important properties of the
scan C-elements are the cell area and the performance degradation, to be discussed
in the next sections.

107

108 Chapter 5. Results

The primitive scan C-elements were only implemented in one process technol-
ogy, which is a special-purpose BiCMOS process. All the shown numbers for both
primitive and composite cells are for this technology. The process is not targeted
at high-speed digital logic. This can be seen in the propagation delay of the gates,
which as such can not be directly compared to that of a pure CMOS process.

5.1.1 Cell area

The cell area of the various scan C-elements is shown in Table 5.1. It lists the various
C-elements that are used in handshake circuits, identified by the name used in Tan-
gram. The second column gives the area of the original non-scan C-elements. The
area is given in the number of grids points used. For reference: a NAND gate uses
four grids points in this technology. The next columns give the area of the composite
(see Section 3.3.3) and primitive (see Section 3.3.4) scan C-element implementations.
Both are available as latch and as flip-flop versions.

The area of the latch versions of the composite cells is dependent on the type
and number of combinational logic cells that are available in the used cell library.

Table 5.1: Cell area of scan C-elements in number of grid points and the average area
weighted by the relative occurrence in a typical design.

C-element Non scan Composite scan Primitive scan Relative

name latch flip-flop latch flip-flop occurrence

ACZ 7 21 33 13 15 33 %

ACY 8 20 32 14 16 31 %

ACYZ 10 23 35 16 18 0 %

BCZ 7 18 30 13 15 16 %

BCY 7 21 33 16 18 0 %

BCYZ 9 21 33 16 18 3 %

C2 9 26 38 14 16 8 %

C3 16 33 45 16 18 2 %

BCINIT 9 27 39 15 17 2 %

AC56 9 25 40 17 19 5 %

Weighted area 7.9 21.2 33.3 13.8 15.8

Weighted overhead 170 % 324 % 76 % 101 %

5.1. Scan C-elements 109

If a large variety of cells is present, the C-element functions can be more efficiently
mapped on these cells. In the current library, some C-elements can be mapped more
efficiently than others. This explains the sometimes large difference in area between
relatively similar C-elements. The composite flip-flop versions are made from the
latch versions using an additional latch. This latch requires an additional 12 grids
of area. The difference in area between the primitive latch and flip-flop versions
is only two grids. This is because for these elements the slave latch is a dynamic
latch, presented in Chapter 3, and because it is integrated with the master latch in
a single primitive cell. The last column of Table 5.1 shows the relative occurrence
of C-elements in the current circuits. The ACZ and ACY type C-elements together
form about 66% of all C-elements. The bottom two rows show the average area and
overhead of the C-elements. Both numbers are weighted using the relative occurrence
of the C-elements.

In the full-scan method discussed sofar, only the flip-flop versions of the C-
element are used. For the composite scan C-element, the slave latch accounts for
about half of the total area overhead. The area overhead of the primitive C-elements
is about three times smaller than that of the composite C-elements. The difference
between latch and flip-flop versions is small for the primitive C-elements, since the
slave latch is implemented with a tristate inverter.

If the composite C-elements have to be used (for instance, because the primitive
versions are not available), then the L1L2* optimization (Section 1.2.3) can save a
significant amount of area. For circuits containing primitive scan C-elements, L1L2*
optimization does not provide such a large area reduction since the difference be-
tween the two is only two grids. The potential reduction is about 15%, which is still
significant.

Table 5.2: Cell area and area overhead (%) of the latch and the flip-flop.

Level-sensitive flip-flop

Element Non scan Scan Composite Primitive

Latch 12 18 (50 %) 30 (150 %) 20 (66 %)

Flip-flop 17 22 (29 %)

As a reference, the area of the non-scan and scan versions of the latch and the flip-
flop are shown in Table 5.2. Included in this table is the primitive version of the level-
sensitive flip-flop as shown in Figure 3.13. This element has not been implemented,
its size is estimated from the size of the normal scan latch and the difference between
latch and flip-flop versions of the primitive scan C-elements. The estimated area
shows that a primitive level-sensitive flip-flop is smaller than a conventional flip-

110 Chapter 5. Results

flop. Therefore if this element is present, more efficient circuits can be designed by
replacing flip-flops with latches. As can be seen from the table, the area overhead of
the latch and flip-flop is smaller than that of the C-element. The main reason for this
is the small original size of the C-elements and not the difference in size of the scan
elements.

5.1.2 Performance degradation

The performance (speed) of the scan elements is also an important parameter. In
Figure 5.1, a simulation trace is shown of an ACZ type C-element, which is one
of the most commonly used C-element. Only the normal functional behavior is of
importance. Therefore the scan C-elements are put in asynchronous mode by making
both master and slave enables high (en1 and en2 in Figure 3.17) and the test enable
(te in Figure 3.17) low. The enable signals are not shown in the simulation. The top
two signals show the a and b inputs of the C-elements. The third signal shows the
output response of a normal non-scan asymmetric C-element. The next two signals
show the output response of the latch and flip-flop version of the composite scan C-
elements. Finally the last two signals show the response of the latch and flip-flop
version of the primitive scan C-element implementations.

In the simulation, two up and two down transitions are shown. The average delay
of these four transitions is given in Table 5.3, together with the relative increase as
compared to the non-scan C-element. The numbers give an indication of the real

830

1990

2970

1120

1320

1360

1700

2830

1100

1290

700

1840

2820

1100

1310

1360

1700

2830

1250

1290

0 5000 10000 15000 20000 25000

t(ps)

a

b

z

z

z

z

z

Non-scan

Composite latch

Composite flip-flop

Primitive latch

Primitive flip-flop

Figure 5.1: Simulation of C-elements, showing increased delay for the scan versions.

5.2. Full scan 111

Table 5.3: Average delay of the various C-elements.

C-element Delay (ps) Delay increase (%)

Non-scan 1060

Composite latch 1810 70%

Composite flip-flop 2860 170%

Primitive latch 1140 8%

Primitive flip-flop 1300 20%

delay a C-element would have if it is embedded in a circuit.
The slave latch of the composite flip-flop version causes the largest additional

delay. As could be expected, the primitive versions are the fastest scan elements.
In the falling transitions these C-elements are even faster than the original non-scan
C-element. This is likely because larger transistors are used to fill any leftover area
inside the designated area for the C-element.

5.2 Full scan

The full-scan method has been applied to a number of industrial designs. These
circuits were selected from an existing set of Tangram designs. Among the designs
were the DCC error decoder [9] and the 80c51 micro-controller [24]. Together, the
examples cover virtually the entire Tangram syntax and are representative of typical
Tangram application domains.

The circuits are listed in Table 5.4. Their names indicate the complexity of the
circuits expressed in the total number of scan elements. In addition, Table 5.4 pro-
vides the number of C-elements, latches, flip-flops and other gates in the circuit. One
may observe that the ratio between the various types of gates shows a large spread,
reflecting the design decisions made for the benchmark circuits. With Tangram it is
possible to actively influence these ratios by changing the Tangram program. The ra-
tio between the types of gates has a significant influence on the cost of the test method
for a circuit. In particular, the area overhead is very dependent on these ratios. Three
of the circuits: tg60, tg303 and tg839 were designed specifically to make their test
more efficient. In the target technology, the primitive implementation of the level-
sensitive flip-flop was not available. This is reflected in the absence of latches, since
without the primitive level-sensitive flip-flop, latches represent a higher test overhead
than flip-flops. Circuit tg164 was developed for minimal circuit area. This leads to an
implementation that uses the minimal number of C-elements. A positive side effect

112 Chapter 5. Results

Table 5.4: Benchmark circuits and their complexity in terms of number of gates.

Design # C-elements # Latches # FFs # Other # Total

tg60 42 0 18 207 267

tg164 83 53 28 799 963

tg303 217 0 86 928 1231

tg432 113 258 61 1186 1618

tg610 188 324 98 1542 2152

tg839 547 0 292 2408 3247

tg980 578 402 0 1383 2363

tg1163 925 206 32 2424 3587

tg1548 566 940 42 3547 5095

of this is that this circuit can be efficiently scan tested. Circuit tg980, on the contrary,
was developed when flip-flops were not yet available in Tangram; it therefore only
uses latches. The result is that this circuit can be expected to have a relatively high
area overhead.

5.2.1 Fault coverage

Test patterns were generated for the control block and the data path for all the bench-
mark circuits. The resulting pattern count and fault coverages are shown in Table 5.5.
All circuits are relatively simple and the number of generated test patterns is therefore
small. In the data path, the fault coverage is between 99.7 and 100%. This indicates
that a small number of redundant gates is still present in the data path. The fault
coverage of the control block is somewhat lower than that of the data path. There are
still some circuits for which the fault coverage in the control block remains under the
98%. There are three main reasons for this:

Redundancy. The current circuits still contain some redundancy. The process of
identifying redundancy and implementing solutions to remove it is ongoing.
Newer versions of the Tangram compiler will generate circuits that contain
less redundancy.

Mutex in test mode. The current treatment of mutex elements, which disables the
element during test mode, results in untestable circuitry in and around the
mutex elements. To reduce this problem either mutexes have to be tested in

5.2. Full scan 113

Table 5.5: Fault coverage of the benchmark circuits.

control block data path

Circuit patterns coverage (%) patterns coverage (%)

tg60 18 92.84 9 100

tg164 54 95.75 102 99.74

tg303 32 93.58 28 99.93

tg432 18 99.24 63 99.98

tg610 16 97.87 43 99.96

tg839 35 95.79 107 99.87

tg980 27 99.13 27 99.91

tg1163 146 98.83 83 99.94

tg1548 40 98.96 80 99.88

their normal mode of operation or mutexes have to be developed that are bet-
ter testable. The first option requires a complicated ATPG process to avoid
problems with non-deterministic behaviour. The second option requires the
design of new testable (possibly scannable) mutexes and will require extensive
simulations to verify that they still operate correctly in asynchronous mode.

Combinational loops. In the current implementation it is still possible that some
combinational loops are not broken by scan. These are typically loops that span
more than 10 cells and are therefore very rare. These loops can be removed by
improving the TgScan tool.

The impact on the fault coverage of all these reasons listed above can be reduced
by further improvements of the Tangram tools. In the circuits tg60 and tg303, a
relatively large number of mutex elements is present that are disabled during test
as was shown in Figure 4.13. This explains the lower fault coverage in the control
blocks of these circuits.

5.2.2 Area overhead

The primary objective of the scan-test approach has been to design a test method for
handshake circuits that is able to obtain high fault coverage with a minimal amount
of test-development effort. After these objectives have been achieved, it is important
to minimize the other costs of the test method. The most important contribution to

114 Chapter 5. Results

the cost is the silicon area overhead of the DfT circuitry. As was shown before the
available library largely determines the final area overhead. This can also be seen in
the following results, in which the scan method was applied to the benchmark circuits
using three different cell libraries:

Composite scan. In this case only composite scan elements are used. This is typi-
cally used when Tangram is first applied to a new fabrication technology since
it can be implemented in any standard cell library and does not require any
special additions to it.

Primitive scan C-elements. The first optimization is the addition of primitive scan
C-elements. The primitive elements are usually only added if first tests are
successful and commercial products are being developed.

Primitive level-sensitive flip-flop. The library may be further extended with a prim-
itive version of an level-sensitive flip-flop. This cell has not yet been added to
a library. The resulting figures are calculated using the cell size given in Ta-
ble 5.2.

The resulting area overhead of the benchmark circuits for the three different cell-
libraries are given in Table 5.6. The same results are shown graphically in Figure 5.2,

Table 5.6: Area in NAND equivalents and area overhead (%) of the benchmark cir-
cuits for the three alternative cell libraries.

Non scan Composite scan Primitive scan Primitive level-

C-elements C-elements sensitive flip-flops

Circuit Area Area (%) Area (%) Area (%)

tg60 425.3 807.3 89.8 632.8 48.8 632.8 48.8

tg164 1649.3 2507.3 52.0 2142.0 29.8 2009.5 21.8

tg303 2071.5 3747.5 80.9 2808.0 35.6 2808.0 35.6

tg432 3054.8 5051.3 65.3 4561.0 49.3 3916.0 28.2

tg610 4559.8 7451.3 63.4 6644.0 45.7 5834.0 27.9

tg839 5550.5 9982.5 79.8 7628.0 37.4 7628.0 37.4

tg980 4475.8 10050.3 124.5 7483.3 67.2 6478.3 44.7

tg1163 5829.0 12843.3 120.3 8821.5 51.3 8306.5 42.5

tg1548 9892.0 17849.1 80.4 15432.8 56.0 13082.8 32.3

average 84 47 36

5.2. Full scan 115

20

40

60

80

tg
60

tg
16

4

tg
30

3

tg
43

2

tg
61

0

tg
83

9

tg
98

0

tg
11

63

tg
15

48

0

100

Control block

Data path
A

re
a

ov
er

he
ad

 (%
)

Figure 5.2: Area overhead of the benchmark circuits: first columns for composite
scan, second columns for primitive scan C-elements, third columns for primitive scan
C-elements and level-sensitive flip-flops.

with the addition of showing the contributions of the control block and the data path
to the area overhead separately.

The composite scan overhead ranges from 52% for circuit tg164 to 124% for
circuit tg980. This difference between the circuits shows the large influence of circuit
design on the area overhead. By taking test into account when choosing alternative
implementations, the area overhead can be reduced by half. Of course this is not
possible for every circuit; sometimes the function cannot be further optimized. The
average area overhead of the circuits using the composite library is 84%. As can be
seen in Figure 5.2, most of this overhead is caused by the control block. The overhead
of the method when composite scan C-element are used, is so large that it makes it
virtually impractical for commercial use.

The addition of the primitive scan C-elements to the library results in a significant
reduction of the area overhead. The average overhead is reduced to 47%. For most
circuits, the data-path now causes the largest contribution to the area overhead. This
is mainly a result of the slave latches that are used to make the latches scan testable.
Only in those circuits that use flip-flops in the data path, the control block still causes
the largest overhead.

116 Chapter 5. Results

Further addition of the primitive level-sensitive flip-flop results in a decrease of
the average area overhead to 36%. This is getting sufficiently low to be of interest
for certain commercial applications. Especially those in which the properties of the
handshake circuits are important or those in which handshake circuits are combined
with other types of circuits.

5.2.3 Performance degradation

The final performance degradation that is caused by the scan method can only be
accurately determined after layout. It depends on the design of the scan C-elements,
other scan elements, and increased wire capacity.

To get a rough feeling for the expected degradation, circuit tg980 has been func-
tionally simulated at gate level. The functional test exercises the circuit with a set of
stimuli, the speed at with the circuit responds to these is determined by the design of
the circuit. This simulation only accounts for the gate delays and increased fan-out
of some signals. The simulation was done with composite flip-flop versions for the
scan C-element, resulting in a worst case situation.

The the time required by the scan version to complete the test was 77% higher
that the time required by the original circuit. Compared to the increase of a separate
C-element, which was 170% for this type of implementation, the increase was less
than half. Based on this, the performance impact on a circuit that uses primitive scan
C-elements is expected be around 10%.

5.3 Demonstrator

The scan test method has been applied to a demonstrator IC developed by Philips
Semiconductors. The IC contains four digital handshake circuit blocks and a number
of analog circuits. The goal was to demonstrate the validity of the scan test method
on an industrial design and in particular to:

• Demonstrate the automatic tool flow;

• Demonstrate the possibility to integrate the tests of multiple Tangram hand-
shake blocks;

• Combine these in a design that also contains analog functions.

5.3.1 Design

The design contains three main digital blocks. Two of these control an analog front-
end. The third is the system controller used to control the overall functions of the
chip. One other smaller digital block supports the system controller. The three main
blocks were based on circuits already presented in the previous sections, being the

5.3. Demonstrator 117

designs: tg60, tg303 and tg839. In Figure 5.3, the block diagram of the circuit is
shown. Besides the above mentioned blocks, the circuit also contains a clock gen-
erator and a test control block(TCB). The clock generator can be bypassed to allow
direct external access to the clock signals. This can be used to test the circuit in case
the clock generator does not operate correctly. The TCB in the circuit can only be
programmed directly after reset. Since this TCB is used to select between control-
block test and data-path test, the circuit has to be reset to switch between these two
types of tests. During test generation, all data-path tests will be grouped into one test
and all control-block tests will be grouped in a second test.

Core A

Core B

Core C

A
nalog front-end

TCB
Clock

Generator

Analog
interface

Digital
interface

Core D

TDO(3)

TDI(3)

TDO(1) TDI(1) TDO(2) TDI(2)

Figure 5.3: Block diagram of the design.

5.3.2 Test generation

Each of the four digital blocks has been designed separately with Tangram. Also
the scan insertion and test-pattern generation was done separately for each block,
resulting in a total of eight test-pattern sets, four for the data-paths and four for the
control blocks. At circuit level, the scan chains of the cores C and D are serially
connected. The scan chains of cores A and B are directly connected to the external
interface. All scan inputs and outputs are multiplexed onto existing signals in the
digital interface.

118 Chapter 5. Results

Test generation is first performed for the four sub-blocks. This uses the approach
described in Appendix A, with one exception: during the test-protocol expansion
phase no scan-continuity test is generated. This is postponed until the protocols are
further expanded to the top-level of the chip. Furthermore, the test protocol expansion
does not generate input files for the vector generation tool; instead it generates files
that can be used to expand the protocols further.

Top level integration

In total there are eight pattern sets and corresponding initial protocols that need to be
expanded. The first step is to expand the control block test and the data path test for
each of the four blocks to block level. After this step is performed for all blocks, the
protocols are further expanded to top-level. During the top-level expansion it is also
necessary to program the TCB.

The TCB that is included can only be written directly after reset; therefore the
chip is reset between the three control-block tests and the three data-path tests. The
programming of the TCB can be included in a test protocol by adding an initialization
section. The commands listed in such a section are executed once before the normal
protocol expansion is started.

The tests for cores A, B, and the combination of C and D, can be executed in
parallel, since they all use a different scan chain. This means that the test time is
reduced to the test time of the core with the maximum test time, defined by the
product of the scan chain length with the the number of test patterns.

5.3.3 Results

Initially the design was implemented using composite scan C-elements. These were
in a second generation replaced by scan C-element that are build around a single
primitive transparent flip-flop. In this way it was possible to achieve a large reduction
in area overhead by only designing one new primitive cell. This netlist was used for
the demonstrator IC. In a later stage a complete set of primitive scan C-elements was
designed, which resulted in a further reduction of the area overhead and this also
improved the speed of the circuit. A demonstrator IC using the primitive cells is,
however, not yet available at the time of writing.

The cell area of the individual blocks was already given in the previous section.
The cell area overhead of the blocks combined is given in Table 5.7, for the three
alternative library implementations. The designs avoided the use of latches in the
data path, which kept the contribution of the data path to the area overhead minimal.
This also means that there is no difference between having a composite or a primitive
level-sensitive flip-flop. The demonstrator IC that was made used the C-elements
based on transparent a flip-flop, which resulted in a cell area overhead of 60 %.

5.4. Summary 119

Table 5.7: Area overhead.

C-element implementation style Overhead

Composite 80 %

Based on transparent flip-flop 60 %

Primitive 37 %

The demonstrator IC also offers the possibility to evaluate the area after layout.
This area has to account for all the additional wiring that is required to connect the
scan elements. It was found that the total area after layout is only 5% higher than the
cell area alone. This was obtained for the circuit using scan C-elements build with
transparent flip-flops. This indicates that the overhead caused by the wires used for
the test-control logic is not that significant. A non-scan handshake circuit has about
the same overhead after layout. For a synchronous circuit the overhead is usually
even larger because more area is used to create a balanced clock tree.

The scan test of the demonstrator IC has been successfully executed, however,
detailed results about the tests are not yet available.

5.4 Summary

To use the test flow it was also necessary to design a library of scan C-elements.
Initially a library containing composite cells was designed. These were build out
of existing cells and could therefore be used immediately. Later, a more efficient
primitive cell library was developed to significantly reduce the area used by the scan
C-elements.

The method has been applied to a number of benchmark circuits. The results
showed a high fault coverage, although for some circuits, the reset and mutex ele-
ments caused a lower coverage in the control block. The area overhead caused by
the full scan test method depends highly on the available primitive cells in a library.
Without special primitive cells for scan C-elements and level-sensitive flip-flops, the
average overhead is 80%. Adding the primitive cells significantly reduces this. The
current average area overhead if all primitive cells are available is around 35 %. In
most cases the final chip area overhead will be even smaller, depending of what other
types blocks (like memories) are present on the chip.

Chapter 6

Conclusion

In this thesis, a scan-test method has been introduced to test handshake circuits de-
signed with the Tangram toolkit. A synchronous scan mode of operation is added to
the handshake circuit. In this mode, the circuit is operated as a normal synchronous
circuit. Because the test is based on synchronous scan testing, the test patterns can
be generated with existing and unmodified test tools. In the following sections the
results of the test method are summarized and reviewed, followed by some options
for further optimizations to improve on the current results.

6.1 Conclusions

The objective of this work has been to develop a test method for handshake circuits.
In the introduction, three main requirements for the test method were listed: a high
fault coverage, an automated test flow and compatibility to existing test tools and
practices. Besides these requirements, a number of other important properties were
defined that needed to be optimized to result in a cost effective test method. The
most important of these properties is the additional area that is required for the DfT
logic. The trend in testing is that the cost associated with fault coverage and manual
development effort is rising in comparison with the cost of silicon area. Therefore, it
was concluded that the test method for handshake circuits should primarily target a
high fault coverage and an automated flow, even if this would result in a higher area
overhead.

The method best suited to meet the test requirements is a scan test method, con-
trolled by a synchronous clock. The full-scan method that has been developed, sup-
ports a fully automated test flow, both for the DfT modifications and for the test gener-

121

122 Chapter 6. Conclusion

ation. For the DfT modifications the new tool TgScan has been developed, that forms
the interface between the handshake circuit world and the synchronous test world.
TgScan inserts a scan chain in the handshake circuit and generates several output
files that are subsequently used to control the application of existing test tools. By
using these files, the test tools are able to generate test patterns that can be executed
on the scannable handshake circuit and that result in a high structural fault coverage.
ATPG is carried out with an existing (Philips proprietary) ATPG tool, ensuring both
high-quality test patterns and a minimum number of patterns. The obtainable fault
coverage depends on the presence of redundancy and the number of gates that have to
be disabled by the test-mode signal, like the mutex elements. Further optimizations
have to be added to the Tangram compiler to avoid these structures or reduce their
number.

The current fault coverage for the control block as reported by the ATPG tool
varies between 92 and 99%. After the optimizations are included, the fault coverage
will increase further, reaching a level equal to the data-path fault coverage, which is
over 99%. The overall fault coverage is comparable to that of a conventional scan
tested synchronous circuit, and higher than that achieved by other the test proposals
for handshake circuits discussed in Section 2.3.

An important practical advantage of a test method based on synchronous scan is
that the method is compatible with many existing test standards and tools. Especially
if the test-control optimizations, described in Section 4.4.1, are applied, the external
interface of a scan testable handshake circuit is equal to that of a synchronous circuit.
This holds for both the number and type of the interface signals as well as for their
timing parameters. The result is that the scan test method is compatible with test-
integration standards that are used to integrate the test for several blocks on an IC.
Test integration is important because situations in which a chip consists of only a
single handshake circuit are rare. In most cases the handshake circuit is combined
with memories, analog circuits or other digital logic blocks, either synchronous or
asynchronous. Most important and likely to be used for test integration are the macro
test flow and the core based testing proposal (P1500).

The large area overhead required for the suggested DfT modifications is the main
remaining issue. Initially when the composite cell library was used, the overhead
was about 80%. The inclusion of primitive scan C-elements in the library reduced
the area overhead from around 80% down to around 35%. This, however, might
still not acceptable for all applications. Therefore, most of the future research will
focus on a further reduction of the area overhead. Within the full scan method still
some small improvements are possible, as will be discussed in Section 6.2. Two
significant improvements that go beyond full-scan are L1L2* scan and partial scan,
which are briefly discussed in Section 6.3. The optimizations are primarily targeted at
reducing the area overhead, but in doing so they also reduce the power consumption
and improve the circuit performance.

Besides the area overhead, cost is also associated with the number of additional

6.2. Improving full-scan 123

test pins. The number of new test pins that are required depends on the design of
the IC. If the handshake circuit is part of a larger IC, most or all of the test pins will
already be present to support the test of the other parts of the IC. If this is not the
case, a number of external pins will have to be added.

6.2 Improving full-scan

Synchronous scan-insertion tools offer a number of options for optimizations that are
not yet applied to handshake circuits. The preferred way to add these features is to use
(parts of) the synchronous tools as a pre (or post) processor and not to re-implement
them in TgScan. The optimizations that are identified for incorporation in TgScan
are discussed in the following sections.

6.2.1 Shift-register recognition

If shift registers are present in the circuit, no scan multiplexers are required for these
registers, provided the proper scan-ordering is chosen. This avoids the additional area
for the multiplexers and the test enable signal to control it. In handshake circuits, shift
registers can only occur in the data path. In the control block, C-elements are used
and since these have at least two data inputs, it is not directly possible to remove
the scan multiplexer. However, it is possible to optimize the scan multiplexer if it
is known which data input is also used as scan input. In those cases, the techniques
described in Section 3.3.3 can be used to derive optimized designs or alternatively,
new optimizations can be defined in the compiler. Shift-register optimization in the
control block requires many new scan C-elements, all combinations of C-element
type and scan-input pin have to be available. The primitive scan C-elements can also
be optimized, but the result is largely dependent on the type of C-element and which
data input is also used as the scan-in input.

6.2.2 User-defined scan-chain architecture

The current implementation of TgScan has no interface to customize the scan chain
it generates. TgScan creates a single scan chain and adds new external pins to the
design for the scan-in and scan-out signals. To make this more flexible, it should
become possible to specify the number of scan chains and which pins should be
used for scan-in and scan-out. These functions are all supported in the standard scan
insertion tool that is used for synchronous circuits. The best solution would be to use
(part of) this tool for these functions.

124 Chapter 6. Conclusion

6.2.3 Layout-based scan routing

Layout-based scan routing is standard practice in synchronous scan test. It mini-
mizes the wiring required to connect the scan elements by changing the order of the
elements in the chain to reflect their physical location in the layout. For application
in a handshake circuit, the tools need to know how to recognize scan C-elements and
latches. Additionally, special conditions such as making separate groups for latches
and flip-flops might be required.

6.3 Beyond full-scan

Next to the full scan optimizations, two optimizations exist that are not common in
synchronous circuits and go beyond the full-scan test method. These optimizations
are L1L2* scan and partial scan. Finally it is possible to combine these two optimiza-
tions. All three options are briefly discussed in the following sections.

6.3.1 L1L2* scan

The full-scan method as described in Chapter 4, requires a slave latch to be inserted
for every latch and every C-element in the circuit. If primitive versions for the scan
C-elements and level-sensitive flip-flops are available, then the overhead associated
with these slave latches is limited. However, if primitive cells are not available, the
overhead caused by these slave latches is substantial. In both cases it is desirable to
remove the slave latches from the circuit. Besides the reduced cell area, also other
properties of the circuit will improve if the slave latches are removed. Without slave
latches there are also no global signals that have to be connected to these latches,
reducing the wiring required for global control signals. Furthermore, without slave
latches, the circuit is faster and consumes less power.

Following the L1L2* scan principles, introduced in [16] and briefly discussed in
Section 1.2.3, some experiments have been carried out to determine the improve-
ments that can be expected from this optimization. Some initial work on this subject
has been reported in [5] and a partitioning algorithm has been developed. The poten-
tial improvement of the L1L2* scan method in terms of how many slave latches can
be removed is highly dependent on the structure of the circuit. For a typical hand-
shake circuit around 50 to 60% of the slave latches can be removed, resulting in an
overall circuit area reduction of around 5 to 8%.

6.3.2 Partial scan

Another promising optimization is partial scan, introduced in Section 1.2.3. In the
data path, a method like SmartScan [40] seems to be the best option. It allows a
reasonable reduction of the number of scan elements, while it remains possible to

6.4. Implications for handshake circuits 125

use combinational ATPG. In the control block this approach might not be so suc-
cessful, because the control block does not contain large pipeline structures. Instead,
the control block contains many small loops, mostly spanning only a few gates. A
conventional partial scan solution is also not desirable since that requires complex
sequential ATPG which can lead to long test patterns.

A potential solution for the control block is to limit the length of a test pattern to
only two sequential patterns. This creates a situation in which non-scan elements are
completely surrounded by scan elements. Therefore all input pins of the non-scan
elements are controllable and their output pins are observable. In this situation, all
internal faults in the non-scan element can be tested with a two-pattern test, as shown
in Section 2.2.3. Selecting the non-scan elements is equivalent to the “independent
set” problem from graph theory. Some initial experiments have shown that such an
approach can achieve a reduction of the number of scan elements in the control block
of around 30%. On the overall circuit area this results in an area reduction of about
5%.

6.3.3 L1L2* scan combined with partial scan

It is also possible to combine the usage of L1L2* scan with partial scan. The minimal
scan requirements are that every loop in the circuit needs to be broken by an L1 latch
and an L2 latch. For loops that span three or more latches, the combination offers
a higher potential area reduction than the optimizations individually. The effect in
a real circuit will of course be smaller, since loops are often intersected with other
loops and cannot be analyzed individually. The potential result on real circuits is not
know yet, but is a promising area for research.

6.4 Implications for handshake circuits

In the previous sections, a number of optimizations have been described to reduce
the cost of the scan test method. Figure 6.1 shows an estimation of the average area
overhead that can be achieved by implementing these optimizations. As can be seen
in this figure, an average area overhead of around 25% to 30% is expected. At the
moment this seems to be the best obtainable by using a (full) scan method on the
current type of handshake circuits.

If the area has to be reduced even further, this will start to influence the way hand-
shake circuits are designed and tested. First it is important to avoid the programming
constructs that have been identified in this thesis as difficult to test. The two most
important design choices in this respect are: avoiding the use locally generated reset
signals and only allow the used of latches if either primitive level-sensitive scan flip-
flops or L1L2* scan are available. Both of these do not require a modification of the
tools.

126 Chapter 6. Conclusion

0

20

40

60

80

100

120

Full scan Primitive
C-elements

Primitive
flip-flops

L1L2* Partial
scan

A
re

a
o

ve
rh

ea
d

 (
%

)

Figure 6.1: Reduction of the area overhead first by using primitive cells and then by
applying the suggested optimizations

A further step is to specifically redesign some handshake components to make
them less expensive to test. The current components were designed without scan
test in mind. In that situation a C-element is not much more expensive to use than a
logic gate. However, when using a scan method, this situation changes in that the C-
elements now become much more expensive. The use of scan testing for handshake
circuits changes the cost functions of the handshake components. To take this into
account requires a redesign of the handshake components to reduce the number of
C-elements. Handshake components that are designed to use fewer C-elements are
better when scan test is used, even though they may be larger otherwise.

Bibliography

[1] M. Abadir and A. P. Ambler, editors. Economics of electronic design, manufac-
ture and test. Kluwer Academic Publishers, 1994.

[2] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital systems testing and
testable design. Freeman, 1990.

[3] V. D. Agrawal, editor. Special Issue on Partial Scan Methods, volume 7 of
Journal of Electronic Testing: Theory and Applications. Kluwer Academic
Publishers, Augustus/October 1995.

[4] A. Bailey and M. Josephs. Sequencer circuits for VLSI programming. In Asyn-
chronous Design Methodologies, pages 82–90. IEEE Computer Society Press,
May 1995.

[5] F. te Beest, A. Peeters, C. H. van Berkel, and H. G. Kerkhoff. Synchronous full-
scan for asynchronous handshake circuits. In IEEE European Test Workshop
(ETW02), pages 381–387, May 2002.

[6] F. te Beest, A. Peeters, M. Verra, C. H. van Berkel, and H. G. Kerkhoff. Au-
tomatic scan insertion and test generation for asynchronous circuits. In Proc.
International Test Conference, October 2002.

[7] C. H. van Berkel. Beware the isochronic fork. Integration, the VLSI journal,
13(2):103–128, June 1992.

[8] C. H. van Berkel. Handshake Circuits: an Asynchronous Architecture for VLSI
Programming, volume 5 of International Series on Parallel Computation. Cam-
bridge University Press, 1993.

127

128 Bibliography

[9] C. H. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken, and F. Schalij.
A fully-asynchronous low-power error corrector for the DCC player. In Inter-
national Solid State Circuits Conference, pages 88–89, February 1994.

[10] C. H. van Berkel, M. B. Josephs, and S. M. Nowick. Scanning the technology:
Applications of asynchronous circuits. Proceedings of the IEEE, 87(2):223–
233, February 1999.

[11] C. H. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij. The VLSI-
programming language Tangram and its translation into handshake circuits. In
Proc. European Conference on Design Automation (EDAC), pages 384–389,
1991.

[12] C. H. van Berkel, A. Peeters, and F. te Beest. Adding synchronous and LSSD
modes to asynchronous circuits. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 161–170, April 2002.

[13] M. L. Bushnell and V. D. Agrawal. Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits. Kluwer Academic Publishers, 2000.

[14] S. Chakravarty and P. J. Thadikaran. Introduction to IDDQ testing. Kluwer
Academic Publishers, 1997.

[15] K. T. Cheng and V. D. Agrawal. A partial scan method for sequential circuit
with feedback. IEEE Transactions on Computers, 39(4):544–548, April 1990.

[16] S. DasGupta, P. Goel, R. G. Walther, and T. W. Williams. A variation of LSSD
and its implications on design and test pattern generation in VLSI. In IEEE Test
Conference, 1982.

[17] I. David, R. Ginosar, and M. Yoeli. Self-timed is self-checking. Journal of
Electronic Testing: Theory and Applications, 6(2):219–228, April 1995.

[18] B. Davis. The economics of automated testing. McGraw-Hill, 1994.

[19] E. B. Eichelberger and T. W. Williams. A logic design structure for LSI testa-
bility. In IEEE Transactions on Computers, pages 462–468, 1978.

[20] R. D. Eldred. Test routines based on symbolic logical statements. Journal of
the ACM, 6(1):33–36, January 1959.

[21] A. Ferre and J. Figueras. On estimating bounds of the quiesent current for IDDQ
testing. In Proc. of the 14th VLSI test symp., pages 106–111, May 1996.

[22] F. Fujiwara and T. Shimono. On the acceleration of test generation algorithms.
In IEEE Trans. Comput., volume C-32, pages 1137–1144, 1983.

Bibliography 129

[23] S. Funatsu, N. Wakatsuki, and T. Arima. Test generation systems in Japan. In
Proceedings 12th Design Automation Symposium, pages 114–122, June 1975.

[24] H. van Gageldonk. An Asynchronous Low-Power 80C51 Microcontroller. PhD
thesis, Dept. of Math. and C.S., Eindhoven Univ. of Technology, September
1998.

[25] J. M. Galey, R. E. Norby, and J. P. Roth. Techniques for the diagnosis of switch-
ing circuit failures. In R. S. Ledley, editor, Proc. of the second annual symp. on
switching circuit theory and logical design, pages 152–160, October 1961.

[26] P. Goel. An implicit enumeration algorithm to generate tests for combinational
logic circuits. In IEEE Trans. Comput., volume C-30, pages 215–222, 1981.

[27] R. K. Gulati and C. F. Hawkins, editors. IDDQ testing of VLSI circuits. Kluwer
Academic Publishers, 1993.

[28] D. Harris. Skew-tolerant circuit design. Morgan Kaufmann Publishers, 2001.

[29] P. J. Hazewindus. Testing Delay-Insensitive Circuits. PhD thesis, California
Institute of Technology, 1992.

[30] M. J. Howes and D. V. Morgan, editors. Reliability and degradation - semicon-
ductor devices and circuits. Wiley-Interscience, 1981.

[31] H. Hulgaard, S. M. Burns, and G. Borriello. Testing asynchronous circuits: A
survey. Integration, the VLSI journal, 19(3):111–131, November 1995.

[32] J. Kessels, T. Kramer, G. den Besten, A. Peeters, and V. Timm. Applying asyn-
chronous circuits in contactless smart cards. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pages 36–44.
IEEE Computer Society Press, April 2000.

[33] J. Kessels, T. Kramer, A. Peeters, and V. Timm. DESCALE: a design experi-
ment for a smart card application consuming low energy. In Rene van Leuken,
Reinder Nouta, and Alexander de Graaf, editors, European Low Power Initiative
for Electronic System Design, pages 247–262. Delft Institute of Microelectron-
ics and Submicron Technology, July 2000.

[34] A. Khoche and E. Brunvand. Testing micropipelines. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 239–246, November 1994.

[35] L. Kleeman and A. Cantoni. On the unavoidability of metastable behavior in
digital systems. IEEE Transactions on Computers, C-36(1):109–112, January
1987.

130 Bibliography

[36] L. Lavagno, M. Kishinevsky, and A. Lioy. Testing redundant asynchronous cir-
cuits by variable phase splitting. In Proc. European Design Automation Confer-
ence (EURO-DAC), pages 328–333. IEEE Computer Society Press, September
1994.

[37] Y. K. Malaiya and R. Rajsuman, editors. Bridging faults and IDDQ testing.
IEEE Computer Society Press, 1992.

[38] E. J. Marinissen, R. Kapur, and Y. Zorian. On using IEEE P1500 SECT for test
plug-n-play. In Proc. International Test Conference, pages 770–777, October
2000.

[39] E. J. Marinissen and M. Lousberg. The role of test protocols in testing
embedded-core-based system ICs. In Proceedings IEEE European Test Work-
shop, pages 70–75, Konstanz, Germany, May 1999.

[40] E. J. Marinissen and M. Muijen. Smartscan: Parial scan with full scan benefits.
In 4th IEEE International Test Synthesis Workshop, May 1997.

[41] A. J. Martin. The limitations to delay-insensitivity in asynchronous circuits.
In William J. Dally, editor, Advanced Research in VLSI, pages 263–278. MIT
Press, 1990.

[42] A. J. Martin. Programming in VLSI: From communicating processes to delay-
insensitive circuits. In C. A. R. Hoare, editor, Developments in Concurrency
and Communication, UT Year of Programming Series, pages 1–64. Addison-
Wesley, 1990.

[43] A. J. Martin and P. J. Hazewindus. Testing delay-insensitive circuits. In Carlo H.
Séquin, editor, Advanced Research in VLSI, pages 118–132. MIT Press, 1991.

[44] P. Maxwell, I. Hartanto, and L. Bentz. Comparing functional and structural test.
In Proc. International Test Conference, pages 400–407, 2000.

[45] A. Peeters. Single-Rail Handshake Circuits. PhD thesis, Eindhoven University
of Technology, June 1996.

[46] O. A. Petlin. Design for Testability of Asychronous VLSI Circuits. PhD thesis,
Department of Computer Science, University of Manchester, 1996.

[47] O. A. Petlin and S. B. Furber. Scan testing of micropipelines. In Proc. IEEE
VLSI Test Symposium, pages 296–301, May 1995.

[48] L. A. Plana and S. M. Nowick. Architectural optimization for low-power non-
pipelined asynchronous systems. IEEE Transactions on VLSI Systems, 6(1):56–
65, March 1998.

Bibliography 131

[49] M. Roncken. Partial scan test for asynchronous circuits illustrated on a DCC
error corrector. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 247–256, November 1994.

[50] M. Roncken. Defect-oriented testability for asynchronous IC’s. Proceedings of
the IEEE, 87(2):363–375, February 1999.

[51] M. Roncken, E. Aarts, and W. Verhaegh. Optimal scan for pipelined testing:
An asynchronous foundation. In Proc. International Test Conference, pages
215–224, October 1996.

[52] M. Roncken and E. Bruls. Test quality of asynchronous circuits: A defect-
oriented evaluation. In Proc. International Test Conference, pages 205–214,
October 1996.

[53] M. Roncken and R. Saeijs. Linear test times for delay-insensitive circuits: a
compilation strategy. In S. Furber and M. Edwards, editors, Asynchronous De-
sign Methodologies, volume A-28 of IFIP Transactions, pages 13–27. Elsevier
Science Publishers, 1993.

[54] J. P. Roth, W. G. Bouricious, and P. R. Schneider. Programmed algorithms to
compute tests to detect and distinguish between failures in logic circuits. In
IEEE Trans. Electronic Comput., volume EC-16, pages 567–579, 1967.

[55] V. Schöber and T. Kiel. An asynchronous scan path concept for micropipelines
using the bundled data convention. In Proc. International Test Conference, Oc-
tober 1996.

[56] J. Segura and A. Rubio. A detailed analysis of CMOS SRAMs with gate oxide
short defects. IEEE Journal of solid-state circuits, 32(10):1543–1550, October
1997.

[57] C. L. Seitz. System timing. In Carver A. Mead and Lynn A. Conway, editors,
Introduction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[58] International Sematech. International technology roadmap for semiconductors
(ITRS), 2001.

[59] M.-D. Shieh, C.-L. Wey, and P. D. Fisher. A scan design for asynchronous
sequential logic circuits using SR-latches. In Proc. of the Midwest Symposium
on Circuits and Systems, pages 1300–1303, 1993.

[60] G. Singer. Current trends and future directions in test and DfT, keynote address.
In Proc. of the 15th VLSI test symp., May 1997.

132 Bibliography

[61] J. M. Soden, R. R. Fritzemeier, and C. F. Hawkins. Zero-defect or zero stuck-at
faults - CMOS IC process improvements with iddq. In Proc. International Test
Conference, pages 240–245, September 1990.

[62] J. M. Soden, C. F. Hawkins, R. K. Gulati, and W. Mao. IDDQ testing: A review.
Journal of Electronic Testing: Theory and Applications, 3(4):5–17, December
1992.

[63] J. Sparsø and S. Furber, editors. Principles of Asynchronous Circuit Design: A
Systems Perspective. Kluwer Academic Publishers, 2001.

[64] I. E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738,
June 1989.

[65] P. Tafertshofer, A. Ganz, and M. Henftling. A SAT-based implication engine
for efficient ATPG, equivalence checking and optimization of netlists. In Proc.
of the International Conference on Computer-aided design, pages 648–655,
November 1997.

[66] E. H. Volkering, A. Khoche, L. A. Kamas, J. Rivior, and H. G. Kerkhoff. Tack-
ling test trade-offs from design, manufacturing to market using economic mod-
eling. In Proc. International Test Conference, pages 1098–1107, October 2001.

[67] C.-L. Wey, M.-D. Shieh, and P. D. Fisher. ASCLScan: a scan design for asyn-
chronous sequential logic circuits. In Proc. International Conf. Computer De-
sign (ICCD). IEEE Computer Society Press, 1993.

[68] R. van de Wiel. High-level test evaluation of asynchronous circuits. In Asyn-
chronous Design Methodologies, pages 63–71. IEEE Computer Society Press,
May 1995.

[69] M. J. Y. Williams and J. B. Angell. Enhancing testability of large scale inter-
grated circuits via test points and additional logic. In IEEE Transactions on
Computers, volume C-22, 1973.

Appendix A

Using the CAT tools

Besides the newly developed tool TgScan, all remaining functions used in the test
flow use tools available in the standard in-house Computer Aided Test (CAT) toolkit
at used Philips. In most cases, special settings have been used for these tools. To
correctly introduce these settings, control files for the CAT tools are automatically
generated by TgScan. In addition, TgScan generates a test-data file. This file contains
an abstract description of scan chains and test modes in the netlist.

The test tools do not operate on the real scan netlist, rather a significant part of
the processing is done using the remodelled files. The remaining part operates on an
abstract view of the circuit, referred to as the CAT view. The information available
in the CAT view is shown in for an example in Figure A.1. This example will be
used in the following sections to explain the operation of the CAT tools. Figure A.1
contains a top-level block and two lower-level blocks for the control block and the
data path. In the scan chain between the data path and the control block an additional
scan element, labelled transparent FF, is present. This is a transparent scan flip-flop
that connects the scan chains and in addition functions as an anti-skew latch. The
information that is available with regard to the blocks is the number and type of input
and output pins, and an abstract description of the scan chain inside the blocks. This
description includes the length of the chain, the scan-in and scan-out pin, the interface
signals between the control block and data path, and possible inversions in the scan
chain.

133

134 Appendix A. Using the CAT tools

Design

Data_path

Control_block

Clk master Clk slave Te TmReset

ti

to

a b c

to_d

ti_c

Transparent_ff

to_c

ti_d

LCS

Figure A.1: CAT view of the design.

A.1 Test-pattern generation

Test patterns are generated separately for the control block and the data path. For both
blocks, a remodelled netlist and a control file are available. In the remodelled netlist
some input pins are not connected. In the real circuit, these are used for either clock
signals or control signals. For example, the slave clock clkslave is not connected
because in the remodel file no slave latches are present. The reason for this is that
latches have all been remodelled by flip-flops. All scan elements in the remodelled
netlist are connected to clkmaster, as this clock is defined as the system clock for the
CAT tools. If an on-chip clock generator is used, the other clock pins do not have
to be described. If a separate input pin is used for the slave clock, this pin has to be
defined as a clock signal in the control file.

The same holds for the latch-control select signal LCS that is used to control the
multiplexer in the latch controller. In the remodel file, this multiplexer is not present
and the request and acknowledge signals of the latch controller are directly connected
to each other. During the execution of the test, these input pins need to be correctly

A.1. Test-pattern generation 135

controlled. This is accomplished by specifying the behaviour of these pins in the
control file.

The number of input signals that have to be defined in the control file depends
on the circuit. Not all circuits require all possible control inputs and some inputs can
be generated on-chip from other signals as was shown in Section 4.4.1. Besides the
clock signals, at most four test-control signals have to be defined: LCS, Te, Tm and
Reset, all shown in Figure A.1. The behaviour of these signals is specified during
shift-mode and normal-mode. The ATPG tool will derive the function of the remain-
ing signals like scan-in and scan-out from the remodelled netlist. Besides the input
signal definition, the control file is also used to specify the technology libraries that
should be used and the parameters for the ATPG algorithm. These can for example
be used to tune the algorithm, exclude certain input combinations and the limit the
computational time.

The ATPG tool will generate a test-pattern file. This file contains the generated
test patterns and the initial test protocol that describes how to apply the patterns.
Listing A.1 shows a number of possible patterns generated for the control block.
There are six stimulus values, corresponding to four scan elements and two primary
inputs. In the example, no primary outputs are present and therefore the only response
values are the four corresponding to the scan elements.

Listing A.1 Pattern set for the control block test of the circuit in Figure A.1

Pattern Stimulus Response
012345 0123

1: 001101 0110
2: 101000 1101
3:

The test protocol specifies which value in the table corresponds to which signal
in the circuit. The initial protocol of the example is given in Listing A.2. The signal
names in the protocol correspond to the signal names in Figure A.1. The protocol
contains three main sections: condition, stimulus and response. Every section con-
tains signal definitions and the times for which those definitions hold which range
from < −x to y >. The normal cycle is defined at time zero. The scan-in phase
uses negative numbers, starting at time −x. Time y specifies the end of the scan-out
phase; both x and y are defined by the scan-chain architecture. The condition section
specifies the behavior of the test-control signals LCS and Te during the test. Te is
also specified during the scan-out phase, LCS is undefined during this phase. In the
example, Tm and Reset are not used. The stimulus and response sections relate the
circuit inputs and outputs with the values in the pattern file. For example, the state-
ment a = S[4], relates input a of the circuit to the fourth column in the test-pattern
file. The output c is not specified because this signal is not used for the scan test of

136 Appendix A. Using the CAT tools

the control block, as explained in Section 4.2.2.

Listing A.2 Initial protocol of control block test of the circuit in Figure A.1

Cell Control_block {
Protocol at Control_block {
Patternfile = "Control_block.pat";
Condition {
LCS<-4:-1> = [0];
LCS<0> = [1];
Te<-4:-1> = [1];
Te<0> = [0];
Te<1:4> = [1];
}
Stimulus {
ti_c<-4:-1> = S[0:3]
a = S[4];
b = S[5];
}
Response {
to_c<1:4> = R[0:3]

}}}

A.2 Protocol expansion

During protocol expansion, the two initial protocols that were generated by the ATPG
tool for the control block and data path are expanded to top-level. This involves
tracing all pins of a block to either the corresponding pin at top-level or to a pin that
is controlled by the scan chain.

The protocol expansion tool starts by loading all the data required to expand the
protocols. First loaded is the top-level netlist of the design. This top-level netlist only
contains the top-level block and the interface definitions for the control block and
data path. The structure of top-level netlist for the example is shown in Listing A.3,
for clarity the signal names are not shown. Besides the modules for the control block
and the data-path, a new module for the transparent scan flip-flop is defined.

Listing A.3 The top-level netlist in Verilog format

module Data_path(...);

endmodule

A.2. Protocol expansion 137

module Control_block(...);

endmodule

module Transparent_ff(...);

TransFF inst (...);
endmodule

module Design(...);

Data_path data_inst(...);
Control_block ctrl_inst(...);
Transparent_ff trans_inst(...);

endmodule

The netlist does not contain information about the internal scan chains. This in-
formation is loaded from a test-data file. The test data for the example is given in
Listing A.4. This file specifies the scan chain for every sub-block. The properties
that are defined are the scan input, the scan output, the scan-enable signal and the
length of the scan chain. The “sffoutput” property specifies intermediate outputs and
the number of the scan element the output signal originates from. This defines the
connections between the control block and the data path and is used to determine
which scan element drives which pin. In the control block, inverting scan elements
can be used, as explained in Section 3.3.3. During ATPG, this inversion is correctly
modelled in the remodel file. For the protocol expansion this information is also re-
quired in order to correctly expand the protocol for the data-path test. If inversions
are not accounted for, the intermediate signals from control block to the data path
might be inverted; also the scan-out pin might be inverted. Information about inver-
sions in the control block scan chain is included in the test-data file and is specified
by the property “InversionBetween”.

Listing A.4 Test data file

cell data_inst {
chain d_chain {
scanenable = Te;
scaninput = ti_d;
scanoutput = to_d;
length = 5;
sffinput {}
sffoutput {a, 1; b, 4;}

}

138 Appendix A. Using the CAT tools

}
cell ctrl_inst {

chain c_chain {
scanenable = Te;
scaninput = ti_c;
scanoutput = to_c;
length = 4;
sffinput {}
sffoutput {c, 4;}
InversionBetween {2, 3;}

}
}
cell trans_inst {

chain t_chain {
scanenable = Te;
scaninput = to_d;
scanoutput = ti_c;
length = 1;
sffinput {to_d, 1;}
sffoutput {ti_c, 1;}

}
}

The final information loaded by the protocol expansion tool are the two initial
protocols. This completes the data required to expand the protocols. In the next step,
three top-level test protocols are generated: one is a scan continuity test, and the other
two are the expanded versions of the control-block test and the data-path test.

The expanded protocol of the control-block test of the example circuit is shown
in Listing A.5. Compared to the initial protocol in Listing A.2, the protocol uses
more cycles. The reason for this is that the values for the scan elements first have to
be shifted through the scan elements in the data path before they reach their intended
location. For this reason, the protocol now starts six cycles earlier. The second main
difference is that the stimulus data for the primary inputs a and b of the control block
is now applied via a scan element in the data-path. The line a = S[4] has been
replaced by ti_c<-4> = S[4] meaning that the data for input a has to be present
four cycles before the normal-mode cycle at the scan input.

Listing A.5 Test protocol of control block at top-level

Cell Control_block {
Protocol at Design {
Patternfile = "Control_block.pat";
Condition {
Tm<-10:-1> = [0];

A.3. Vector generation 139

Tm<0> = [1];
Te<-10:-1> = [1];
Te<0> = [0];
Te<1:4> = [1];
}
Stimulus {
ti_c<-10:-7> = S[0:3]
ti_c<-4> = S[4];
ti_c<-1> = S[5];
}
Response {
to_c = R[0:3]

}}}

A.3 Vector generation

The final step in the test flow is the generation of the test vectors. This is accom-
plished by a vector-generation tool that is part of the existing CAT toolkit. The tool
combines the test protocols and the test patterns into the final test vectors that are
used to test the circuit. The output of the tool is either a set of test vectors for a spe-
cific tester or a simulation file that can be used to simulate the test vectors together
with the scan-testable circuit. Default, a Verilog simulation file is created that can be
used for logical simulation of the test vectors. An option is to include information in
the simulation file to allow for fault simulation. Fault simulation is a tool that can be
used to determine the fault coverage of the test with regard to the real scan-testable
circuit, which includes all asynchronous structures. Unfortunately, this requires ex-
cessive run times and is therefore only feasible for small designs. If the simulation of
the patterns is successful, vectors can be generated for a selected tester.

Summary

In this thesis a full-scan test method is introduced that can be used to test handshake
circuits. Handshake circuits are a class of asynchronous circuits that are designed
according to set of rules that guarantee correct operating circuits. The circuits used
in this work are designed using the Tangram toolkit that was developed at Philips
Research.

Handshake circuits are more difficult to test than conventional synchronous cir-
cuits, because of a number of reasons. Most importantly is the fact that the circuits
behave autonomously. Internal operations can occur independently of external input
signals, which limits the outside control that can be exerted on the circuit. Other test-
ing problems associated with handshake circuits are the higher number of sequential
elements in the circuits, as compared to synchronous circuits, and to a lesser extend
problems with initialization and non-deterministic behavior.

For a test method to be cost effective, a number of properties are important. Tra-
ditionally minimization of the area overhead has been crucial, but the possibility of
offering an automated flow and guaranteeing high fault coverage are becoming in-
creasingly important. The full-scan test method was chosen because this method
offers an automated flow and high fault coverage, even though it requires a relatively
high area overhead.

With a full-scan test method every sequential element in the circuit is modified
into a scan element. Scan elements have a multiplexer on the data input that makes
a second data input available that is used to connect all scan elements serially in a
shift register. All scan elements are controlled by a global clock signal that is added
to the circuit to support the scan test. Clocking is based on a pair of two-phase non-
overlapping clock signals, which apart from safe timing also support a transparent
mode in which the circuit behaves functionally as an unmodified asynchronous cir-
cuit.

141

142 Summary

Many of the sequential elements used in handshake circuits consist of C-elem-
ents. A C-element is a generic form of a set-reset latch. Several different types exist;
each with alternative set and reset functions. In total about a dozen variations are
commonly used. For use in a scan test method, the C-elements have to be modified
into scan testable C-elements. Two modifications are required: the addition of a scan
data input and the addition of clock input to control the element. These modifications
increase the size of a C-element, which combined with the fact that a typical hand-
shake circuit contains a large number of C-elements will result in a high overall area
increase of the circuit. To counteract this, smaller scannable C-elements are designed
at transistor level and circuits are optimized to reduce the number of C-elements.

Handshake circuits can also contain conventional latches and flip-flops. These
are used in the data path and are clocked with local clock signals generated by the
control block. For the scan test method, a global clock has to be multiplexed onto
these local clock signals. This is implemented by inserting a multiplexer in the local
clock signal, however, to be able to test the clock multiplexer itself, separate tests are
used for the data path and the control block. Each of these two tests will cover a part
of the faults in the multiplexer, and together they cover all faults in the multiplexer.

One of the main reasons to choose the full scan test method, is the availability
of a large number of existing tools that, without modification, can be used to gener-
ate the test patterns. In addition these test tools support hierarchical test generation.
This allows the tests for the control block and for the data path to be generated sep-
arately first and later combined into a top-level test. During test pattern generation,
C-elements and latches are remodelled by flip-flops. This is required to make the test
pattern generation tool to recognize them as valid scan elements.

The method has been applied to several benchmark circuits, which were pro-
cessed fully automatically. The results show that a high fault coverage of over 99%
can be achieved, equal to that of a synchronous circuit. The required area overhead is
however much larger than that of a scannable synchronous circuit. Using gate-level
scan C-element implementations results in an average overhead of around 80%. By
using an optimized transistor level library, this reduces to around 35%.

Samenvatting

In dit proefschrift wordt een full-scan test methode geïntroduceerd die gebruikt kan
worden voor het testen van handshake schakelingen. Handshake schakelingen zijn
een klasse van asynchrone schakelingen die worden ontworpen op basis van een aan-
tal regels die garanderen dat de schakeling goed functioneert. De schakelingen die in
dit proefschrift worden gebruikt zijn ontworpen met behulp van de Tangram gereed-
schappen die ontwikkeld zijn bij Philips Research.

Door een aantal redenen, zijn handshake schakelingen moeilijker te testen dan
gewone synchrone schakelingen. Het belangrijkste is het feit dat de schakelingen zich
autonoom gedragen. Interne handelingen kunnen onafhankelijk van externe ingang
signalen gebeuren, hetgeen de controle beperkt die vanaf de buitenkant op de schake-
ling kan worden uitgeoefend. Andere test problemen van handshake schakelingen
zijn het grotere aantal geheugen elementen, vergeleken met synchrone schakelingen,
en in mindere mate problemen met initialisatie en niet deterministisch gedrag.

Om een test methode kosten effectief te laten zijn, zijn een aantal eigenschappen
belangrijk. Traditioneel is de minimalisering van de extra oppervlakte belangrijk,
maar in toenemende mate worden het aanbieden van een geautomatiseerde methode
en de fouten dekkingsgraad belangrijk. De full-scan test methode is gekozen omdat
deze geautomatiseerd is en een hoge dekkingsgraad bied, ook al gaat dit gepaard met
een relatief hoge extra oppervlakte.

Met een full-scan test methode wordt elk geheugen element in de schakeling
gemodificeerd in een scan element. Scan elementen hebben een multiplexer voor de
data ingang, die gebruikt wordt voor het maken van een tweede data ingang. Deze
wordt vervolgens gebruikt om alle scan elementen serieel te verbinden in een scan
keten. Alle scan elementen worden bestuurd door een globaal klok signaal die hi-
ervoor wordt toegevoegd aan de schakeling. De elementen worden geklokt met een
paar tweefase niet overlappende klokken, die naast het zorgen voor een veilig gedrag

143

144 Samenvatting

in de schakeling ook een transparante mode ondersteunen waarin de schakeling zich
als een niet gemodificeerde asynchrone schakeling gedraagt.

Veel van de geheugen elementen die gebruikt worden in handshake schakelingen
zijn de C-elementen. Een C-element is een generieke vorm van een set-reset latch.
Er bestaan verschillende types; elk met een alternatieve set en reset functie. In to-
taal worden er ongeveer 12 variaties gebruikt. Om ze te kunnen gebruiken in een
scan test methode, moeten de C-elementen worden gemodificeerd tot scan testbare
C-elementen. Twee modificaties zijn nodig: het toevoegen van de scan data ingang
en het toevoegen van de klok ingangen om het element te kunnen besturen. De twee
modificaties zorgen voor een toename van de grote van het C-element, gecombineerd
met het feit dat handshake schakeling typisch veel van deze elementen bevat, zorgt
dit voor een grote toename van het oppervlak van de schakeling. Om dit tegen te gaan
zijn er ook kleinere scan C-elementen ontworpen op transistor niveau en worden de
handshake schakelingen geoptimaliseerd om het aantal C-elementen te verminderen.

Handshake schakelingen kunnen ook conventionele latches en flip-flops bevatten.
Deze worden gebruikt in het datapad en worden geklokt met klok signalen die lokaal
in een controle blok worden gegenereerd. Om ze te gebruiken in de scan test methode,
moet er een globaal klok signaal worden gemultiplext op de lokale klok signalen. Dit
is geïmplementeerd door in elk lokale klok signaal een multiplexer toe te voegen,
echter om deze multiplexer zelf te testen, zijn aparte tests nodig voor het datapad en
het controle blok. Elk van deze testen dekt maar een gedeelte af van de fouten in de
multiplexer, maar samen dekken ze alle fouten in de multiplexer af.

Een van de belangrijkste redenen om een full-scan test methode te gebruiken is
de aanwezigheid van een groot aantal programma’s die zonder wijziging gebruikt
kunnen worden om test patronen te genereren. Daarnaast ondersteunen deze pro-
gramma’s hiërarchische test generatie, hetgeen gebruikt wordt om eerst aparte testen
te genereren voor het datapad en het controle blok en deze later samen te voegen in
één test. Gedurende test patroon generatie worden C-elementen en latches gehermod-
elleerd door flip-flops. Dit is nodig om het test patroon generatie programma deze
elementen te laten herkennen als geldige scan elementen.

De methode is toegepast op een aantal referentie schakelingen, die volledig au-
tomatisch zijn aangepast. De resultaten laten zien dat een fouten dekking van meer
dan 99% kan worden gehaald, hetgeen vergelijkbaar is met de dekking van een syn-
chrone schakeling. De benodigde extra oppervlakte is echter veel groter dan wat
nodig is in een synchrone schakeling. Wanneer gate-level scanbare C-elementen
worden gebruikt, is er ongeveer 80% extra oppervlakte nodig. Door transistor niveau
geoptimaliseerde C-elementen te gebruiken kan dit worden gereduceerd tot ongeveer
35%.

Acknowledgments

It all started after I finished my masters thesis back in 1998. My supervisor Ronald
Tangelder asked if I would be interested in doing a Ph.D. thesis. The answer was:
no, unless you can offer me (1) an exciting subject, (2) industrial cooperation and (3)
more than the at that time unconvincing salary. A little to my surprise he was able to
offer all three of them and now over four years later it has resulted in this thesis.

It has been a time with numerous pleasant moments and new experiences made
possible by all my friends and colleges. I therefore would like to thank everybody
who has supported me over the last four years. A special word of thanks is in place
for a number of people.

• My promotor prof. Thijs Krol and my second promotor prof. Kees van Berkel
for their support and critical review of this work.

• Hans Kerkhoff, my assistant promotor and daily supervisor in Twente.

• Ad Peeters, my daily supervisor at Philips for his detailed knowledge about
everything Tangram and everything else.

• I would like to thank Ronald Tangelder for getting me to start this work and for
being my supervisor during the first two years.

• Marc Verra for his support with implementing TgScan, without him it would
have taken a lot longer to develop a working prototype.

• Marc Mutsaers and Marjolein Koopman for providing me a place to stay when-
ever I was in Enschede.

• Vladimir Zivkovic and Octavian Petre for being my roommates and all the
other (former) Ph.D. candidates in Twente: Milan Stancic, Liquan Fang, Arun

145

146 Acknowledgments

Anthony Joseph, Herman Vermaak and Nur Engin. Milan and Octavian are
specially acknowledged for the great time we spend scootering around Corfu.

• All the support form the secretariat, system administration, financial adminis-
tration and technical support. Without you it would now have been possible to
complete this work.

• Pieter van der Horn and Hajo Broersma for working on the L1L2* algorithm,
unfortunately time was to short to fully implement it.

Finally, I would like to thank my family who have supported me and gave me
always the opportunity to get away from my daily work and to do some refreshing
outdoor work on my parents farm.

Eindhoven Frank te Beest
April, 2003.

About the author

Frank te Beest was born on the 19th of June 1973 in the town of Dinxperlo in the
Netherlands. He started his study Electrical Engineering at the University of Twente
in Enschede in 1993. In 1998 he graduated on an M.Sc. thesis on a behavioral model
of an AD converter.

Subsequently in 1999 he started to work towards his Ph.D. on the testability of
asynchronous circuits. This work was carried out as a cooperation between the Uni-
versity of Twente and the Philips Research Laboratories, supported by the Dutch
Technology Foundation STW. The work led to a number of publications at journals,
conferences, workshops and finally to this thesis. His research interests are the design
and test of asynchronous circuits, including scan test, ATPG and core based test.

Frank te Beest is currently working at the Philips Research Laboratories in Eind-
hoven, the Netherlands.

Current address

Philips Research Laboratories
Prof. Holstlaan 4
5656 AA Eindhoven
The Netherlands

E-mail: frank.te.beest@philips.com

147

Index

acknowledge property, 26
arbitration, 32
asynchronous control, 39
autonomous behavior, 28, 44

C-element, 22, 26, 48
asymmetric, 49
symmetric, 49

clock generator, 66, 95
clock multiplexing, 43

C-element, 54
latch, 52

combinational gates, 46
combinational loops, 45, 85, 102, 113
composite gates, 45
conditions, 24
controllability, 8
copy operation, 82, 104

data multiplexing, 42
C-element, 54
latch, 52

deadlock, 26, 36

edge-triggered clocking, 42, 62
enabling, 50
evaluation phase, 11, 93

full-scan testing, 10
functional test, 9, 35

handshake channels, 2
data encoding

dual-rail, 4
single rail, 4

ports, 2
active, 2
passive, 2

types, 2
non-put, 2
pull, 3
push, 3

handshake circuit, 2
handshake components, 4

mixer, 5
multi channel sequencer, 91
multiplexer, 88
parallel, 5
passivator, 90
repeater, 4
sequencer, 5, 90
transferrer, 5
variable, 6

hold method, 35
hold time, 60

149

150 Index

Iddq testing, 8, 37
initialization, 6, 84, 103

optimizing reset signals, 97
isochronic fork, 26

L1L2* scan, 12, 38, 109, 124
latch control select, 71, 74, 76

on-chip generation, 96
optimization, 98
timing definition, 93

latch controller, 25
test modification, 70

LCS, see latch control select
level-sensitive clocking, 42, 60
level-sensitive flip-flop, 53
local clock signal, 24
LSSD scan, 12, 43

max-delay, 62
metastability, 32
min-delay, 62
mixer, see handshake components
move operation, 81, 103
multiplexer, see handshake components
mutex, 32, 86, 94, 103, 113

test mutex, 87
Mux-D scan, 43

normal mode, 10

observability, 8
on-chip clock generation, 66

parallel, see handshake components
parameters, 24
partial scan, 12, 124
polarity-hold latch, 47
premature firing, 26
primary inputs, outputs, 8
primitive gates, 45
production rules, 45

quasi delay insensitive, 26

redundancy, 31, 90, 112
remodelling, 79, 105
repeater, see handshake components
reset, see initialization

scan C-elements, 54, 107
cell area, 108
composite implementation, 54
performance, 110
primitive implementation, 57

scan mode, 10
scan phase, 11, 93
sequencer, see handshake components
sequential behavior, 29, 44
sequential depth, 30
sequential gates, 46
setup time, 60
single pattern testability, 30
skew, 60
stability interval, 60
start-up channel, 6
structural test, 10

Tangram, 6
TCB, see test control block
test assembly, see vector generation
test control block, 97
test control logic, 93

optimization, 95
test flow implementation, 99
test pattern, 78

generation, 38, 79, 100, 134
test protocol, 78

expansion, 81, 100, 136
initial, 78

test signal definition, 93
TgScan, 101
transferrer, see handshake components
two pattern testability, 30

validity interval, 60
variable, see handshake components
vector generation, 100, 139

